The genus Olbitherium was originally described in 2004 from the early Eocene of the Wutu Formation in China as a ‘perissodactyl-like’ archaic ungulate. Described material of Olbitherium consists of partial dentaries with lower cheek teeth, isolated upper molars, and an isolated upper premolar. Subsequent collaborative fieldwork by Belgian and Chinese researchers discovered new material including a partial skull, the anterior portion of the dentary, and associated postcrania. In their general form, the skull and postcrania are similar to those of early perissodactyls. The new material provides a more complete picture of the upper dentition, and the anterior dentary demonstrates the presence of three lower incisors and a large canine, both ancestral features for perissodactyls. A phylogenetic analysis was conducted to test the affinities of Olbitherium, using a matrix of 321 characters and 72 taxa of placental mammals emphasizing perissodactyls and other ungulates. The results produced four shortest trees of 1981 steps. In all four trees, Olbitherium is the sister-taxon to all perissodactyls except Ghazijhippus. In contrast, when scoring was restricted to the originally described material, the results produced 16 shortest trees of 1970 steps, and Olbitherium nests well within Perissodactyla as sister-taxon to a clade including Lambdotherium and the brontotheriids Eotitanops and Palaeosyops. The new material not only supports the identification of Olbitherium as a perissodactyl, but it also suggests that it is significant for understanding the ancestral perissodactyl morphotype. Funding Sources U.S. National Science Foundation (DEB1456826), Chinese Ministry of Science and Technology (2009DFA32210), and Belgian Science Policy Office (BL/36/C54).
Located in
Library
/
RBINS Staff Publications 2020
The Quercy Phosphorites are a set of Eocene-Oligocene deposits from South-West France that yielded numerous vertebrate fossils, including amphibians, mostly as isolated bones. However, in 1873, several exceptional amphibian specimens were discovered, with the external surface of the unmineralized tissues preserved, and were commonly referred as “mummies”. In the 19th century, they were described without any knowledge of their internal anatomy. Since 2012, we have started scanning these “mummies”, revealing the preserved internal soft tissues and articulated skeleton. A first specimen was attributed in 2013 to Thaumastosaurus gezei and we here present our results from the tomography of a second “mummified” anuran, previously identified as Bufo servatus. The tomography showed a preserved articulated skeleton, and its osteological characteristics are similar to the first scanned anuran “mummy”, representing different ontogenetic stages. Both are now both attributed to Thaumastosaurus servatus nov. comb. The new anatomical information is used to assess the affinities of T. servatus, which appears to belong to the Pyxicephalidae, an African anuran clade. Thaumastosaurus thus represents both the oldest occurrence of this clade in the fossil record and its first occurrence outside of Africa. Its presence in Europe highlights a faunistic exchange with Africa during the Eocene, also documented for several clade of squamates. The presence of this African herpetofauna in Europe might be linked to the warmer climate during the Eocene. However, most of this herpetofauna, including Thaumastosaurus, disappeared from the region around an extinction event (named the “Grande Coupure”) that took place around the Eocene/Oligocene transition (~34 Ma).
Located in
Library
/
RBINS Staff Publications 2021