Skip to content. | Skip to navigation

Personal tools

You are here: Home
1244 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Atmospheric correction of Sentinel-3/OLCI data for mapping of suspended particulate matter and chlorophyll-a concentration in Belgian turbid coastal waters
The performance of different atmospheric correction algorithms for the Ocean and Land Colour Instrument (OLCI) on board of Sentinel-3 (S3) is evaluated for retrieval of water-leaving radiance reflectance, and derived parameters chlorophyll-a concentration and turbidity in turbid coastal waters in the Belgian Coastal Zone (BCZ). This is performed using in situ measurements from an autonomous pan-and-tilt hyperspectral radiometer system (PANTHYR). The PANTHYR provides validation data for any satellite band between 400 and 900 nm, with the deployment in the BCZ of particular interest due to the wide range of observed Near-InfraRed (NIR) reflectance. The Dark Spectrum Fitting (DSF) atmospheric correction algorithm is adapted for S3/OLCI processing in ACOLITE, and its performance and that of 5 other processing algorithms (L2-WFR, POLYMER, C2RCC, SeaDAS, and SeaDAS-ALT) is compared to the in situ measured reflectances. Water turbidities across the matchups in the Belgian Coastal Zone are about 20–100 FNU, and the overall performance is best for ACOLITE and L2-WFR, with the former providing lowest relative (Mean Absolute Relative Difference, MARD 7–27\%) and absolute errors (Mean Average Difference, MAD -0.002, Root Mean Squared Difference, RMSD 0.01–0.016) in the bands between 442 and 681 nm. L2-WFR provides the lowest errors at longer NIR wavelengths (754–885 nm). The algorithms that assume a water reflectance model, i.e. POLYMER and C2RCC, are at present not very suitable for processing imagery over the turbid Belgian coastal waters, with especially the latter introducing problems in the 665 and 709 nm bands, and hence the chlorophyll-a and turbidity retrievals. This may be caused by their internal model and/or training dataset not being well adapted to the waters encountered in the BCZ. The 1020 nm band is used most frequently by ACOLITE/DSF for the estimation of the atmospheric path reflectance (67\% of matchups), indicating its usefulness for turbid water atmospheric correction. Turbidity retrieval using a single band algorithm showed good performance for L2-WFR and ACOLITE compared to PANTHYR for e.g. the 709 nm band (MARD 15 and 17\%), where their reflectances were also very close to the in situ observations (MARD 11\%). For the retrieval of chlorophyll-a, all methods except C2RCC gave similar performance, due to the RedEdge band-ratio algorithm being robust to typical spectrally flat atmospheric correction errors. C2RCC does not retain the spectral relationship in the Red and RedEdge bands, and hence its chlorophyll-a concentration retrieval is not at all reliable in Belgian coastal waters. L2-WFR and ACOLITE show similar performance compared to in situ radiometry, but due to the assumption of spatially consistent aerosols, ACOLITE provides less noisy products. With the superior performance of ACOLITE in the 490–681 nm wavelength range, and smoother output products, it can be recommended for processing of S3/OLCI data in turbid waters similar to those encountered in the BCZ. The ACOLITE processor for OLCI and the in situ matchup dataset used here are made available under an open source license.
Located in Library / RBINS Staff Publications 2021
Article Reference Partial revision of the genus Dorysthenes (subgenus Paraphrus ) Thomson, 1861 with overall review of the species planicollis (Bates, (Coleoptera, Cerambycidae, Prioninae, Prionini )
Located in Library / RBINS Staff Publications 2023 OA
Article Reference Additional contribution to the knowledge of Asian Aegosomatini with the description of a new species in the genus Aegosoma Audinet-Serville, 1832 (Coleoptera, Cerambycidae, Prioninae)
Located in Library / RBINS Staff Publications 2020
Article Reference Macrodontia crenata (Olivier, 1795) au Suriname (Coleoptera, Cerambycidae, Prioninae)
Located in Library / RBINS Staff Publications 2020
Article Reference Hybotidae (Diptera) of the Botanic Garden Jean Massart (Brussels-Capital Region, Belgium) with description of two new Platypalpus species and comments on the Red Data List
Located in Library / RBINS Staff Publications 2022 OA
Article Reference From a pair to a dozen: the piscivorous species of Haplochromis (Cichlidae) from the Lake Edward system
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Co-introduction of Dolicirroplectanum lacustre, a monogenean gill parasite of the invasive Nile perch Lates niloticus: intraspecific diversification and mitonuclear discordance in native versus introduced areas
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Species depauperate communities and low abundances of monogenean gill parasites at the edge of the natural distribution range of their cichlid hosts in northern Africa
Located in Library / RBINS Staff Publications 2022
Article Reference On a small collection of sea cucumbers from the Mediterranean continental slope with the first record and re-description of Pseudothyone serrifera (Oestergren, 1898) (Holothuroidea: Dendrochirotida), a new species for the Mediterranean Sea
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Dental microwear as a behavioral proxy for distinguishing between canids at the Upper Paleolithic (Gravettian) site of Předmostí, Czech Republic
Morphological and genetic evidence put dog domestication during the Paleolithic, sometime between 40,000 and 15,000 years ago, with identification of the earliest dogs debated. We predict that these earliest dogs (referred to herein as protodogs), while potentially difficult to distinguish morphologically from wolves, experienced behavioral shifts, including changes in diet. Specifically, protodogs may have consumed more bone and other less desirable scraps within human settlement areas. Here we apply Dental Microwear Texture Analysis (DMTA) to canids from the Gravettian site of Předmostí (approx. 28,500 BP), which were previously assigned to the Paleolithic dog or Pleistocene wolf morphotypes. We test whether these groups separate out significantly by diet-related variation in microwear patterning. Results are consistent with differences in dietary breadth, with the Paleolithic dog morphotype showing evidence of greater durophagy than those assigned to the wolf morphotype. This supports the presence of two morphologically and behaviorally distinct canid types at this middle Upper Paleolithic site. Our primary goal here was to test whether these two morphotypes expressed notable differences in dietary behavior. However, in the context of a major Gravettian settlement, this may also support evidence of early stage dog domestication. Dental microwear is a behavioral signal that may appear generations before morphological changes are established in a population. It shows promise for distinguishing protodogs from wolves in the Pleistocene and domesticated dogs from wolves elsewhere in the archaeological record.
Located in Library / RBINS Staff Publications 2020