Skip to content. | Skip to navigation

Personal tools

You are here: Home
1159 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference The “Key” to Bringing DNA Collections to the Next Level: A DiSSCo Flanders Working Group Product
The DiSSCo (Distributed System of Scientific Collections) Flanders consortium, with one of the set goals being ``maturing'' (i.e., optimizing the management of) and unlocking (i.e., publishing) their DNA collections, identified 1) the need for actively sharing best practices on the management of DNA collections; and 2) a need for guidance on how to bring theory into practice.During the DiSSCo Flanders project, a DNA collection working group was created. The working group is open to all biodiversity-related DNA collections associates in Belgium, including those in diverse roles such as researchers, lab technicians, collection managers and data managers. Around 50 people from 13 organizations are currently participating. Members can be passively (reading only) or actively (joining events) engaged. The strength, as well as one of the challenges, of the DiSSCo Flanders community is that the natural science collections are created and managed in different organizational contexts: universities, museum institutes and both governmental and non-governmental research organizations. This translates to a variety of collection management decisions and structures such as: decentralized or centralized; cold or room temperature storage; managed by an appointed curator or by a lab technician.The working group organizes meetings and workshops, tours of each other's collections, and shares a mailing list and an online document space. As its principal output, the group has co-created: “The key to bringing DNA collections to the next level” (Veltjen et al. 2024) with two main results: the ``Challenges'' and the “Key”.The ``Challenges'' is a list of 23 challenges applicable to DNA collection management. For example, challenge 8: ``Select or customise collection management systems to meet the needs of DNA collections''. They are intended to spark debate and give focus to the second output: the ``Key.'' The ``Key'' lists seven yes/no questions:Do you have an up-to-date overview of all direct, internal stakeholders of the institute’s DNA collection and are you involving them in the (current) intent to “bring the DNA collection to the next level”?Is preserving a DNA collection within the scope of the institute? And is the DNA collection officially recognized within the institute?Do you have, on paper, a clear description of the scope of the DNA collection?Have you outlined the current overarching workflow of the DNA collection?Have you been able to establish your starting level on the ``DNA collection maturation chart'' and is the assessment properly logged?Level up, one level at a time, and log the process. Have you reached all of the goals in level 3 on the ``DNA collection maturation chart''?Do you have a re-evaluation strategy for your DNA collection?The ``DNA collection maturation chart'' has 11 categories (rows), three levels (columns) and 33 goals (see Table 1 in Veltjen et al. 2024). The Key provides 18 guidance chapters, which give in depth information, literature and user experiences (Suppl. material 2 in Veltjen et al. 2024).The Key is a specialized tool for DNA collections. It facilitates a standardized and holistic approach, allowing both a helicopter view of the maturation process and close-up view of specific goals. The working group aims to test the Key, whereby the process of ``leveling up'' is embedded in a community setting: sharing ambitions, setbacks, changes of plans and success stories. The output is ready in its first version. It is published as a reviewable publication, allowing post-publication peer review (Veltjen et al. 2024). The works are expected to evolve through time, depending on user feedback and user experiences.The working group and co-created output are positive examples of how a local community—sometimes managing smaller, or less conspicuous types of natural science collections—can work together and use their unique perspectives, experiences and needs to contribute to the international natural science collection and biobanking communities.
Located in Library / RBINS Staff Publications 2024
Article Reference The “Triceratops” leafhoppers. A new species of the genus Cornutipo Evans, 1934 from Northern Queensland, Australia. (Hemiptera: Cicadellidae: Eurymelinae: Ipoini)
Located in Library / RBINS Staff Publications 2023 OA
Inproceedings Reference The affinity of the invasive population of Sarotherodon melanotherron melanotheron inhabiting the Atchakpa reservoir with four other populations in the Ouémé River basin inferred from landmark-based geometric morphometry
Located in Library / RBINS Staff Publications 2023 OA
Inbook Reference The animal remains
Located in Library / RBINS Staff Publications 2018
Article Reference The ants of the Galápagos Islands (Hymenoptera, Formicidae): a historical overview, checklist, and identification key
The Galápagos ant fauna has long been understudied, with the last taxonomic summary being published almost a century ago. Here, a comprehensive and updated overview of the known ant species of the Galápagos Islands is provided with updated species distributions. The list is based on an extensive review of literature, the identification of more than 382,000 specimens deposited in different entomological collections, and recent expeditions to the islands. The ant fauna is composed of five subfamilies (Dolichoderinae, Dorylinae, Formicinae, Myrmicinae, and Ponerinae), 22 genera, 50 species, and 25 subspecies, although three species (Crematogaster crinosa Mayr, 1862, Camponotus senex (Smith, 1858), and Solenopsis saevissima (Smith, 1855)) are considered dubious records. Finally, an illustrated identification key of the species found in the archipelago is presented.
Located in Library / RBINS Staff Publications 2023
Article Reference The ants of the Galápagos Islands (Hymenoptera, Formicidae): a historical overview, checklist, and identification key
The Galápagos ant fauna has long been understudied, with the last taxonomic summary being published almost a century ago. Here, a comprehensive and updated overview of the known ant species of the Galápagos Islands is provided with updated species distributions. The list is based on an extensive review of literature, the identification of more than 382,000 specimens deposited in different entomological collections, and recent expeditions to the islands. The ant fauna is composed of five subfamilies (Dolichoderinae, Dorylinae, Formicinae, Myrmicinae, and Ponerinae), 22 genera, 50 species, and 25 subspecies, although three species (Crematogaster crinosa Mayr, 1862, Camponotus senex (Smith, 1858), and Solenopsis saevissima (Smith, 1855)) are considered dubious records. Finally, an illustrated identification key of the species found in the archipelago is presented.
Located in Library / RBINS Staff Publications 2023
Article Reference The Archaeology, Architecture and Afterlife of the Odeion of Ancient Sagalassos
Located in Library / RBINS Staff Publications 2024
Article Reference The Australian issid planthopper genus Orinda Kirkaldy, 1907: New subgenera, new species, host plant and identification key (Hemiptera: Fulgoromorpha: Issidae)
Located in Library / RBINS Staff Publications 2023 OA
Inproceedings Reference The Belgian barcoding facility for organisms and tissues of policy concern
Located in Library / RBINS Staff Publications 2024
Article Reference The benthic foraminiferal response to the mid-Maastrichtian event in the NW-European chalk sea of the Maastrichtian type area
The mid-Maastrichtian carbon isotope event (MME), dated at ∼69 Ma, reflects a perturbation of the global carbon cycle that, in part, correlates with the enigmatic global extinction of ‘true’ (i.e., non-tegulated) inoceramid bivalves. The mechanisms of this extinction event are still debated. While both the inoceramid extirpation and MME have been recorded in a variety of deep-sea sites, little is known about their expression in epicontinental chalk seas. In order to study the shallow-marine signature of the MME in this epicontinental shelf sea, we have generated quantitative foraminiferal assemblage data for two quarries (Hallembaye, NE Belgium; ENCI, SE Netherlands) in the Maastrichtian type area, complemented by a species-specific benthic δ13C record. In contrast to deep-sea records, no significant changes in benthic foraminiferal assemblages and benthic foraminiferal accumulation rates are observed across the MME in the type-Maastrichtian area. At the Hallembaye quarry, the otherwise rare endobenthic species Cuneus trigona reaches a transient peak abundance of 33.3% at the onset of the MME, likely caused by a local transient change in organic matter flux to the seafloor. Nevertheless, high and near-constant species evenness shows that neither oxygen nor organic matter flux was limited across the extinction level or during the MME. Benthic foraminiferal data from the uppermost part of the studied section, above the MME, indicate a significant increase in food supply to the seafloor. Decreased amounts of terrigenous elements across this interval document a lesser riverine or aeolian influx, which means that the increased benthic productivity is linked to a different origin. Potentially, the continuous precipitation of chalk under nutrient-poor conditions in the Late Cretaceous chalk sea was enabled by efficient nutrient recycling in the water column. In shallower depositional settings, nutrient recycling took place closer to the seafloor, which allowed more organic matter to reach the bottom. These results provide insights in the importance of nutrient cycling for biological productivity in the NW-European chalk sea.
Located in Library / RBINS Staff Publications 2022 OA