-
A Neogene succession in the city centre of Antwerp (Belgium): stratigraphy, palaeontology and geotechnics of the Rubenshuis temporary outcrop
-
A temporary outcrop near the “Rubenshuis” in the centre of Antwerp (northern Belgium) facilitated the study of the Neogene glauconitic sand of the Berchem and Kattendijk formations, west and south of their respective stratotype sections. In contrast to the latter sections, the exposed Kiel Member of the Berchem Formation contains a relatively silty interval in its upper part, which is also reflected in Cone Penetration Tests. This silty interval is rich in molluscs, including the subspecies Glossus lunulatus cf. lunulatus and Ennucula haesendoncki haesendoncki, previously unknown from this member. Dinoflagellate cysts indicate that the main body of the Kiel Member was deposited during the middle Burdigalian, while only the upper part was deposited during the late Burdigalian. The Kiel Member is covered by the shell-rich, silty sand of the Langhian Antwerpen Member (Berchem Formation). Both members display soft-sediment deformation structures, probably caused by differences in silt content between and within these units. The Antwerpen Member is incised by the Lower Pliocene Kattendijk Formation, which reduced the thickness of the former to only 1.1 m, compared to 7 m in northeastern Antwerp. As a result, the basal gravel of the Kattendijk Formation contains many fossils reworked from the Antwerpen Member, in addition to autochthonous molluscs and Ditrupa. The Zanclean fauna resembles associations known from the highest part of the Kattendijk Formation in the former Oosterweel outcrop north of Antwerp, while it differs from the fauna of the lowermost Kattendijk Formation near Doel and Kallo. Hence, the palaeontological observations corroborate the regional depositional model of this unit, suggesting that only the youngest gully sequence of the Kattendijk Formation was deposited across the city of Antwerp.
Located in
Library
/
RBINS Staff Publications 2024 OA
-
A Paleocene occurrence of cornelian cherries Cornus subg. Cornus in the land-mammal site of Berru (Paris Basin, France)
-
Cornus subgenus Cornus, also called cornelian cherries, is a relatively ancient clade of dogwoods with a complex biogeographic history. Their fossil record attests to a distribution in North America during the Late Cretaceous and Paleocene, whereas the earliest fossil record in Europe is dated as early as the Eocene. Here, we describe a new occurrence of cornelian cherries based on permineralized endocarps from the late Paleocene (ca. 58 Ma) land-mammal locality of Berru, in Northwest France. The 48 studied specimens possess characteristic cornelian cherry endocarp morphology with locules associated with a dorsal germination valve, no central vascularization, and the presence of numerous secretory cavities in the endocarp wall. In addition, the presence of (three)-four locules and a large apical depression strongly suggest affinities with the early Eocene species Cornus multilocularis from the London Clay Formation. This new occurrence expands the stratigraphic range of the species by approximately four to six million years and is the first unequivocal evidence of cornelian cherries in Europe during the Paleocene. The biogeographical history of cornelian cherries remains complex to explore because of its ancient distribution in the Cretaceous and a geographically and stratigraphically patchy Cenozoic record.
Located in
Library
/
RBINS Staff Publications 2025
-
Devonian lithostratigraphy of Belgium
-
Located in
Library
/
RBINS Staff Publications 2024
-
Upper Devonian lithostratigraphy of Belgium
-
Located in
Library
/
RBINS Staff Publications 2024
-
Middle Devonian lithostratigraphy of Belgium
-
Located in
Library
/
RBINS Staff Publications 2024
-
Lower Devonian lithostratigraphy of Belgium
-
Located in
Library
/
RBINS Staff Publications 2024
-
Revised lithostratigraphic scale of the Devonian of Belgium: An introduction and an homage to Pierre Bultynck
-
Located in
Library
/
RBINS Staff Publications 2024
-
Late is not too late: redescriptions of some Carboniferous insects from Western Europe studied by Daniel Laurentiaux (Palaeodictyoptera, Paoliida)
-
Located in
Library
/
RBINS Staff Publications 2024
-
Cyrtospiriferid (Spiriferida) brachiopods from the lower Famennian recovery interval of Central Armenia: insights on biotic interactions and “blisters”
-
Located in
Library
/
RBINS Staff Publications 2024
-
The endocranial cast of Khirtharia (Artiodactyla, Raoellidae) provides new insights into the earliest evolution of the cetacean brain
-
Introduction Raoellidae are small artiodactyls retrieved from the middle Eocene of Asia (ca - 47 Ma) and closely related to stem Cetacea. Morphological observations of their endocranial structures allow for outlining some of the early steps of the evolutionary history of the cetacean brain. The external features of the brain and associated sinuses of Raoellidae are so far only documented by the virtual reconstruction of the endocast based on specimens of the species Indohyus indirae. These specimens are however too deformed to fully access the external morphology, surface area, and volume measurements of the brain. Methods We bring here new elements to the picture of the raoellid brain by an investigation of the internal structures of an exceptionally well-preserved cranium collected from the Kalakot area (Jammu and Kashmir, India) referred to the species Khirtharia inflata. Micro-CT scan investigation and virtual reconstruction of the endocast and associated sinuses of this specimen provide crucial additional data about the morphological diversity within Raoellidae as well as reliable linear, surfaces, and volumes measurements, allowing for quantitative studies. Results We show that, like I. indirae, the brain of K. inflata exhibits a mosaic of features observed in earliest artiodactyls: a small neocortex with simple folding pattern, widely exposed midbrain, and relatively long cerebellum. But, like Indohyus, the brain of Khirtharia shows unique derived characters also observed in stem cetaceans: narrow elongated olfactory bulbs and peduncles, posterior location of the braincase in the cranium, and complex network of blood vessels around the cerebellum. The volume of the brain relative to body mass of Khirtharia inflata is markedly small when compared to other early artiodactyls. Conclusion We show here that, cetaceans that nowadays have the second biggest brain after humans, derive from a group of animals that had a lower-than-average expected brain size. This is probably a side effect of the adaptation to aquatic life. Conversely, this very small brain size relative to body mass might be another line of evidence supporting the aquatic habits in raoellids.
Located in
Library
/
RBINS Staff Publications 2024