-
Compilation of presentations at BICEpS colloquium 2019. Annexe to BICEpS Annual report 2019 – Reinforcing Belgian ICES People.
-
The International Council for the Exploration of the Sea (ICES; French: Conseil International pour l'Exploration de la Mer, CIEM) is an intergovernmental marine science organization that brings together the efforts and knowledge of 20 Member States, bordering the North Atlantic and the Arctic Circumpolar Zone, on physical oceanography, marine ecosystems and fisheries management. Nowadays, more than 80 Belgian scientists are directly involved in the work of the 160 bodies and expert groups of ICES, which gather the expertise of more than 1500 scientists yearly, totalling up to 5000 scientists from over 700 marine institutes and organizations over the years. This important and often voluntary dedication of Belgian scientists to the work of ICES deserves more visibility among the Belgian scientific community itself and to policy makers.This is, among others, why the BICEpS initiative was launched in 2018. BICEpS general aim is to offer a platform to the Belgian ICES community to get to know each other, to improve collaboration and share information, and to promote ICES to the wider scientific community in Belgium. BICEpS Annual report 2019 presents the second year of activity of this initiative created to reinforce Belgian ICES people. The report targets marine scientists, marine managers and policy makers. It presents the results of the initiative so far. The report contains the list of Belgian ICES members in 2019 with their membership to the different ICES working groups, and the results of the second BICEpS Colloquium organised on 2 December 2019 and hosted by ILVO in Ghent (Summary of the sessions, abstracts of communications presented and list of participants). The abstracts of the colloquium are supplemented by a separate annex published online which assembles the PowerPoint presentations of the colloquium accessible at http://ices.dk/community/groups/Documents/BICEPS/BICEpS19-PPT-presentations.pdf The full report is accessible on the ICES website at http://ices.dk/community/groups/Pages/BICEpS.aspx
Located in
Library
/
RBINS Staff Publications 2020
-
Conclusions and future actions
-
Located in
Library
/
RBINS Staff Publications 2024
-
Consumption refuse from the Byzantine castle at Pessinus, Central-Anatolia, Turkey
-
Located in
Library
/
No RBINS Staff publications
-
Contributions to Belgian Paleogene (plant) research: a tribute to Philippe Gerrienne
-
The paleobotanist Philippe Gerrienne was internationally renowned for his work on early land plants. His research career was however not limited to the study of Devonian floras. He also actively contributed to the progress of Belgian Wealdian (Early Cretaceous), early Paleogene and Quaternary research. In this framework, Philippe’s interest for Paleogene plants already appeared when he helped to sort Stockmans’ paleobotanical collections of the Royal Belgian institute of Natural Sciences (RBINS) during a civil service he did between 1987 and 1989. In the old conservatoires, he discovered hundreds of silicified trunks and branches from the “upper Landenian” (early Eocene) of Belgium, which were collected in 1970 in the area of Hoegaarden during the construction of the Brussels-Liège highway (E40-A3). From 1994, the RBINS developed new research activities in early Paleogene Belgian sites. At this occasion, fossil plants discovered next to vertebrates from the warm earliest Eocene at Dormaal were studied in collaboration with the Royal Museum for Central Africa, which owns an excellent xylotheque of tropical woods (Doutrelepont et al., 1997). This first step allowed in 1999, after several preliminary works, to start a partnership with the University of Liège (ULiège) and the University of Mons (UMons) through a F.R.F.C.-I.C. (FNRS) project, leaded by Muriel Fairon-Demaret (ULg), on the "Reconstruction of the terrestrial ecosystems in Belgium during the Palaeocene-Eocene transition, 50-60 million years ago". During three years (1999-2002), numerous fieldworks in Belgium and research activities in labs were realized, including a first database of more than 600 hundreds fossil wood specimens. In this overview, I summarize the main accomplishments that have been done in the field. At Péruwelz, we found a silicified trunk fragment of a new arborescent Ericaceae in the marine Thanetian (Upper Paleocene), which was named Agaristoxylon garennicum (Gerrienne et al., 1999). The paleoenvironment of Dormaal was reconstructed based on fruits and seeds from the Paleocene Eocene Thermal Maximum (Fairon-Demaret & Smith, 2002). The most successful work was probably the study of the in situ monospecific Glyptostroboxylon forest of Overlaar at Hoegaarden (Fairon-Demaret et al., 2003). This warm Everglades-like paleoenvironment attracted the Belgian media and finally led to the construction of the geopark of Hoegaarden. In 2004, Philippe described the Givetian (middle Devonian) seed precursor Runcaria heinzelinii Stockmans, 1968 from Ronquières, Belgium (Gerrienne et al., 2004). The rediscovery of the 385-million-year-old basal seed plant and, the same year, the retirement of his close colleague Muriel Fairon-Demaret focused definitively his interest on the Paleozoic. References Doutrelepont, H., Smith, T., Damblon, F., Smith, R. & Beeckman, H., 1997. Un bois silicifié de peuplier de la transition Paléocène-Eocène de Dormaal, Belgique. Bulletin de l'Institut royal des Sciences naturelles de Belgique, 67, 183-188. Fairon-Demaret, M. & Smith, T., 2002. Fruits and seeds from the Tienen Formation at Dormaal, Paleocene-Eocene transition in eastern Belgium. Review of Palaeobotany and Palynology, 122, 47-62. Fairon-Demaret, M., Steurbaut, E., Damblon, F., Dupuis, C., Smith, T. & Gerrienne, P., 2003. The in situ Glyptostroboxylon forest of Hoegaarden (Belgium) at the Initial Eocene Thermal Maximum (55 Ma). Review of Palaeobotany and Palynology, 126, 103-129. Gerrienne, P., Beeckman, H., Damblon, F., Doutrelepont, H., Fairon-Demaret, M. & Smith, T., 1999. Agaristoxylon garennicum Gerrienne et al., gen. et sp. nov., an arborescent Ericaceae from the Belgian Upper Paleocene: palaeoenvironmental implications. Review of Palaeobotany and Palynology, 104, 299-307. Gerrienne, P., Meyer-Berthaud, B., Fairon-Demaret, M., Streel, M. & Steemans, P., 2004. Runcaria, a Middle Devonian Seed Plant Precursor. Science, 306, 856-858.
Located in
Library
/
RBINS Staff Publications 2021
-
Correlating cross-border Cenozoic stratigraphy in the Belgian-Dutch border region: results from H3O – De Voorkempen
-
The sustainable use and management of natural resources in border regions require unambiguous geological information from neighbouring countries. However, the available data often lack compatibility and the same level of detail across borders. Aim of the Belgian-Dutch H3O projects is to produce seamless, cross-border, 3D geological and hydrogeological models of the Cenozoic deposits across the border between Belgium and The Netherlands. “H3O – De Voorkempen” is the third consecutive project, focusing on the Noorderkempen (Flanders) and the western part of Noord-Brabant (The Netherlands). The project started in 2020 and the final results will be delivered in 2023. A crucial step in any cross-border geological modelling task is to establish the correlation between lithostratigraphic units on both sides of the border. In this project, the correlation is initially based on the available knowledge of regional lithostratigraphy (including chronology, depositional environment, sedimentological characteristics) and then further fine-tuned based on the interpretation of high-quality boreholes, geophysical well logs and seismic lines that cover the main geological complexities and cross the international border. The correlations are graphically presented in a chrono-lithostratigraphic correlation chart and cross-section profiles. The established correlation scheme will be used as a base for converting or reinterpreting the available data. In the final stage, the harmonized datasets will be used to create a geometrically and stratigraphically consistent 3D model of “De Voorkempen”. The result will be a state-of-the-art reference for the subsurface structure of the project area, which can be used as a base for scientific research and cross-border management of natural resources. The Belgian-Dutch H3O projects are carried out by a partnership between TNO – Geological Survey of the Netherlands, VITO and RBINS – Geological Survey of Belgium, with support from the Flemish Bureau for Environment and Spatial Development (VPO), Flanders Environment Agency (VMM), Province of Noord-Brabant and drinking water company Brabant Water. The geological models are/will be available in the public domain via the online data portals of DOV (Database of the Subsoil in Flanders) and DINOloket (Data and Information on the Dutch Subsurface). For the technical reports of previous H3O projects, see Deckers et al., 2014 and Vernes et al., 2018. References Deckers, J., Vernes, R.W., Dabekaussen, W., Den Dulk, M., Doornenbal, J.C., Dusar, M., Hummelman, H.J., Matthijs, J., Menkovic, A., Reindersma, R.N., Walstra, J., Westerhoff, W.E. & Witmans, N., 2014. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Roerdalslenk in Zuidoost-Nederland en Vlaanderen (H3O-Roerdalslenk). VITO/TNO report, Mol/Utrecht, 208 pp. (incl. 8 appendices). Vernes, R.W., Dekkers, J., Bakker, M., Bogemans, F., De Ceukelaire, M., Doornenbal, J., den Dulk, M., Dusar M., Van Haren, T., Heyvaert, V., Kiden, P., Kruisselbrink, A., Lanckacker, T., Menkovic, A., Meyvis, B., Munsterman, D., Reindersma, R., Rombaut, B., ten Veen, J., van de Ven, T., Walstra, J. & Witmans N., 2018. Geologisch en hydrogeologisch 3D model van het Cenozoïcum van de Belgisch-Nederlandse grensstreek van Midden-Brabant / De Kempen (H3O – De Kempen). TNO/VITO/KBIN-BGD report, Utrecht/Mol/Brussel, 109 pp. (+8 appendices).
Located in
Library
/
RBINS Staff Publications 2021
-
Cranial morphology of Khirtharia inflata (Raoellidae, Artiodactyla)
-
Raoellidae are extinct small-sized semiaquatic artiodactyls that are the closest relatives to crown clade Cetacea. They display morphological features showing the transition between terrestrial and aquatic lifestyles and therefore bring crucial information to understand the earliest steps of cetacean evolution. Raoellid cranial morphology, including the ear region and endocranial morphology, has been documented using cranial remains referred to Indohyus indirae from the Kalakot area, Jammu and Kashmir in India. The study of these specimens highlighted that several cetacean features are already present in raoellids. The previously available Indohyus material was very deformed, preventing access to quantitative data and leading to potential misinterpretations. We describe new undeformed cranial material from the Kalakot area, documenting another raoellid species, Khirtharia inflata. The new observations allow us to complete our knowledge of raoellid cranial morphology, including the original shape of the cranium and brain endocast and to confirm the specificities of raoellid morphology within Artiodactyla. We further provide the first quantitative data for the different brain components and show that Raoellidae had low encephalization and neocorticalization values, much lower than cetaceans and close to early diverging, primitive, dichobunoid artiodactyls. Reconstruction of the blood sinuses above the cerebellum supports the previous “intraosseous” hypothesis about the initial steps of the development of the caudal venous rete mirabile in cetaceans. The presence of several cetacean cranial features in Raoellidae, such as the peculiar shape of the frontal, the strong postorbital constriction, the periotic involucrum, or the elongation of the olfactory bulbs, questions the definition of the Cetacea clade.
Located in
Library
/
RBINS Staff Publications 2023 OA
-
Critical analysis of the carnivoran mammal success in Europe during the Paleogene
-
Why are we surrounded by only one group of placental carnivorous mammals (Carnivora: the presentday lions, dogs, bears, and seals among others) today, while at least three other groups of placental mammals (Hyaenodonta, Mesonychia, Oxyaenidae) were in competition with carnivorans 50 million years ago? Since the 1990s, palaeontologists have investigated the success of carnivoraform mammals (including Carnivora) and their crucial adaptations in detail. Analysis of the taxonomic and morphological diversification of these groups in the North American fossil record clearly demonstrated that carnivoraforms outcompeted hyaenodonts and oxyaenids during the Eocene, specifically from around 50 Ma onwards. We document the evolutionary history of the taxonomic diversity as well as the evolution of the body mass of carnivorous mammals that lived in Europe during the Paleogene (66–23 Ma). The results suggest that this competition was diametrically opposed in North America and Europe. Carnivoraforms actually did not become diversified in Europe during the Eocene and thus were not as taxonomically successful in Europe as in North America during that period. Moreover, during the Eocene, European hyaenodonts varied more in body mass than carnivoraforms. The situation dramatically changed during the 'Grande Coupure' (around Eocene–Oligocene boundary; ca. 33.9 Ma). This transition corresponds to a major faunal turnover in Europe: during the earliest Oligocene global cooling event (Oi-1), the Eocene endemic carnivorous fauna was replaced by immigrant taxa (hyaenodonts and carnivorans), mainly from Asia. This abstract is a contribution to the Belspo Brain Pioneer project BR/175/PI/CARNAGES funded by the Belgian Science Policy Office.
Located in
Library
/
RBINS Staff Publications 2019
-
De la terre au métal : les approvisionnements d’un atelier du travail du cuivre et de ses alliages à Bruxelles au début du XVe siècle.
-
Located in
Library
/
RBINS Staff Publications 2022
-
De watertoestand van de Zenne in laatmiddeleeuws Brussel (Br.)
-
Located in
Library
/
RBINS Staff Publications 2023
-
Decision support under uncertainty for geothermal applications: case selection and concept development
-
In order to meet climate goals and provide energy security, geothermal energy can play an important part in Belgium’s energy production portfolio. The current implementation of geothermal energy in Belgium is very limited, making accurate forecasts about the economic potential difficult. In the DESIGNATE project, tools and workflows are developed to investigate the potential of deep geothermal energy and geothermal applications in abandoned mines in Belgium, considering uncertainties at reservoir, technology and economic level. The goal of this project is to make forecasts about the role of these geothermal applications in the Belgian energy portfolio and provide support for strategic planning of subsurface activities by: explicitly considering uncertainties in modelling non-standard geothermal resources; creating tools for integrated forecasts under uncertainty; setting up a methodological framework for territorial LCAs considering surface and subsurface impacts; and analysing interferences and their consequences for geothermal energy deployment in Belgium. These workflows will be developed for and applied to five real and theoretical case studies throughout Belgium, in different geological settings. A first case is the Balmatt deep geothermal project, a deep geothermal research project led by VITO in Mol, of which two wells are operational as a doublet. To allow for a realistic economic assessment, this case takes the basic structure and development of the Balmatt project, but as if it would be a commercial doublet project at the same location and in the same Carboniferous strata. A second case is a deep doublet system in NW Turnhout, currently under development by the geothermal development company HITA. This project allows supplying heat to part of the city of Turnhout’s residential and tertiary sector’s buildings. A third case involves the application of a novel single-well technology for geothermal heat extraction To compensate for the unknowns of the new technology, a more uniform and predictable reservoir type was chosen for this application: the Cretaceous deposits in the Campine Basin. The fourth case will investigate a new deep geothermal doublet in the Mons Basin, the Deep Mons project. At Porte de Nimy, close to a hospital, two wells of about 2.5km depth are planned to reach the Carboniferous. A fifth and last case is the application of an open geothermal system in former coal mine galleries. Preliminary, the Péronnes-lez-Binche coal mines were selected, as the structural separation of the galleries in a shallower colder part and a deeper warmer part allows for several applications such as seasonal use of heat and cold. Because a portfolio of methods will be developed to analyse different aspects of these projects, a solid common base is needed across all methods. These “project concepts” start from a decision tree, listing the major decision steps for each case, such as seismic exploration, well drilling, and the potential use cases. Additionally, options for waiting and abandoning the project are also included. Other data such as duration and cost are tied to this framework. Figure 1 shows a flow chart of such a decision tree for the Balmatt case. Because of their flexibility and speed, analytical solutions will be developed from numerical models for simulating the reservoir behavior and predict the evolution of temperature and pressure. The project uses an innovative approach by stepping away from simple well designs and homogeneous reservoirs, and introducing uncertainty. These analytical models will provide direct input for a geological techno-economic assessment (G-TEA), a territorial life cycle assessment (LCA), and a new version of the PSS simulator. Project development is simulated considering the analytical reservoir models as resource, the technical and economic aspects of project development, heat transport, energy demand, environmental impact, energy market and the policy framework. Acknowledgements This research is carried out under the DESIGNATE project, which receives funding from the BELSPO BRAIN-be 2.0 research programme under contract nr B2/191/P1/DESIGNATE.
Located in
Library
/
RBINS Staff Publications 2021