Association for Tropical Biology and Conservation annual meeting https://www.atbc2024.org Large old tropical trees as keystone biodiversity structures: the Life on Trees program Leponce Maurice1, Basset Yves2, Aristizábal-Botero Ángela1, Albán Castillo Joaquina3, Aguilar Rengifo Guillermo4, Barbut Jérôme5, Buyck Bart5, Butterill Phil6, Calders Kim7, Carrias Jean-François8, Catchpole Damien9, D’hont Barbara7, Delabie Jacques10, Drescher Jochen11, Ertz Damien12, Heughebaert André13, Hofstetter Valérie14, Leroy Céline15, Leveque Antoine16, Macedo Cuenca Victor4, Melki Frédéric17, Michaux Johan18, Ocupa Horna Luis19, Pillaca Huacre Luis3, Poirier Eddy20, Ramage Thibault21, Rougerie Rodolphe5, Rouhan Germinal5, Rufray Vincent17, Salas Guererro Marcos4, Scheu Stefan11, Schmidl Jürgen22, Silva Dávila Diana3, Valenzuela Gamarra Luis23, Vanderpoorten Alain18, Villemant Claire5, Youdjou Nabil1, Pascal Olivier17 1 Royal Belgian Institute of Natural Sciences, Vautier st. 29, Brussels, 1000, Belgium; 2 Smithsonian Tropical Research Institute, Panama; 3 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru; 4 Servicio Nacional de Áreas Naturales Protegidas por el Estado, Ministerio del Ambiente, Peru; 5 Muséum national d'Histoire naturelle, Paris, France; 6 Biology Centre, Czech Academy of Sciences, České Budějovice,Czech Republic; 7 Ghent University, Belgium; 8 Université Clermont-Auvergne, Clermont-Ferrand, France; 9 Independent Consultant, Lima, Peru; 10 Centro de Pesquisas do Cacau – CEPEC, Itabuna, Brasil; 11 Göttingen University, Germany; 12 Meise Botanic Garden, Belgium; 13 Belgian Biodiversity Platform, Brussels, Belgium; 14 AGROSCOPE, Nyon, Switzerland; 15 AMAP (Univ. Montpellier, CIRAD, CNRS, INRAE, IRD), Montpellier, France; 16 PatriNat (OFB-CNRS-MNHN), Paris, France; 17 Fonds de Dotation Biotope Pour La Nature, Mèze, France; 18 Université de Liège, Belgique; 19 Centro de Investigación en Biología Tropical y Conservación, Piura, Perú ; 20 Independent entomologist, Cayenne, Guyane ; 21 Independent entomologist, Concarneau, France ; 22 Universität Erlangen-Nürnberg, Germany. ; 22 Jardín Botánico de Missouri, Peru E-mail: (presenting author): mleponce@naturalsciences.be The aim of the Life on Trees (LOT, www.lifeontrees.org) program is to generate baseline knowledge about the number of eukaryotic species that a single large mature tropical tree can host and to understand how these communities of organisms are assembled. The program is being undertaken in the Andean Amazon biodiversity hotspot. Our first project, LOT01 in the Andean foothills in 2022, located at 400m a.s.l., involved the study of a spectacular Dussia tessmannii tree (Fabaceae), towering at 50 meters in height and 45m wide. Our second project, LOT02 in the Andes in 2023, at 2450m a.s.l., focused on a 32-meter-tall Ficus americana subsp. andicola. Surveys were carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). To better understand the contribution of different tree components (bark, leaves, fruits, flowers, living and dead wood) to overall tree biodiversity, we partitioned observations into communities based on vertical strata or microhabitat and will examine similarities and nestedness in the composition of these communities. Initial findings indicate that significant diversity is harbored by the individual tree at both locations (e.g., LOT01 vs LOT02: 42 vs 114 orchid species, 28 vs 28 fern species, 200+ vs 300+ bryophyte species, and 180 vs 100+ lichen species identified). These figures set world records for their respective elevations. This confirms that large old tropical trees are important pools of biodiversity, probably related to the variety of local microhabitats and tree age.
Located in
Library
/
RBINS Staff Publications 2023
Canopy laser scanning to study the complex architecture of large old trees Barbara D'hont1 , Professor Kim Calders1 , Professor Alexandre Antonelli6 , Dr. Thomas Berg7 , Dr. Karun Dayal1 , Dr. Leonard Hambrecht5 , Dr. Maurice Leponce2,3, Prof. Arko Lucieer5 , Olivier Pascal4 , Professor Pasi Raumonen8, Professor Hans Verbeeck1 1Q-ForestLab, Department of Environment, Ghent University, Ghent, Belgium, 2Royal Belgian Institute of Natural Sciences, Brussels, Belgium, 3Université Libre de Bruxelles, Brussels, Belgium, 4Fonds de Dotation Biotope Pour La Nature, France, 5School of Geography, Planning, and Spatial Sciences, University of Tasmania, , Australia, 6Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom, 7ARAÇÁ Project, Nova Friburgo, Rio de Janeiro, Brazil, 8Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland Large trees are keystone structures providing multiple ecosystem functions in forests all around the world: they disproportionately contribute to forest biomass and biodiversity. Large trees can have an extremely complex structure, housing many epiphytes on their stem and branches. High point-density 3D point clouds, in which leaves and epiphytes in the tree can be distinguished, are useful to make the link between the distribution of organisms on the tree, the tree architecture and its microclimate. In addition, a comprehensive branching model can improve above ground biomass (AGB) estimates. Highly detailed, complete point clouds of large trees are, however, exceptionally difficult to derive. With terrestrial laser scanning, the state-of-the-art method to capture 3D tree structure, the plant material blocks the view of (or, occludes) the top part of the dense crown. Drone or airborne laser scanning data on the other hand, lacks detail in the subcanopy. Combining these two methods minimises occlusion; however, increased distance from the tree to the scanner still leads to a relatively low resolution of the canopy point clouds. To improve the level of precision of the tree point clouds, we introduce a new concept, called canopy laser scanning (CLS). With CLS, a laser scanner is operated statically inside the tree canopy, reducing the distance between the area of interest and the instrument. We lifted a high-end laser scanner (RIEGL vz-400(i)) inside the canopy of six large emergent trees. Four of these trees are located in different types of tropical rainforests in Colombia, Brazil and Peru. They are part of biodiversity programs in which organisms and their spatial distributions are studied (Life On Trees, Araçá). The two other trees are famous giants located in the wet temperate eucalypt forests of southern Tasmania. We will present the practical aspects of CLS, evaluate the extra value of using canopy scans, looking at occlusion and point cloud precision, estimate epiphyte cover and AGB. We demonstrate that canopy laser scanning opens up new opportunities in sciences in which multi-disciplinary teams perform in depth research on large individual trees.
Located in
Library
/
RBINS Staff Publications 2023