Skip to content. | Skip to navigation

Personal tools

You are here: Home
1746 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference ECMAScript program Bioturbation has a limited effect on phosphorus burial in salt marsh sediments
It has been hypothesized that the evolution of animals during the Ediacaran–Cambrian transition stimulated the burial of phosphorus in marine sediments. This assumption is centrally based on data compilations from marine sediments deposited under oxic and anoxic bottom waters. Since anoxia excludes the presence of infauna and sediment reworking, the observed differences in P burial are assumed to be driven by the presence of bioturbators. This reasoning however ignores the potentially confounding impact of bottom-water oxygenation on phosphorus burial. Here, our goal is to test the idea that bioturbation increases the burial of organic and inorganic phosphorus (Porg and Pinorg, respectively) while accounting for bottom-water oxygenation. We present solid-phase phosphorus speciation data from salt marsh ponds with and without bioturbation (Blakeney salt marsh, Norfolk, UK). In both cases, the pond sediments are exposed to oxygenated bottom waters, and so the only difference is the presence or absence of bioturbating macrofauna. Our data reveal that the rate of Porg and Pinorg burial are indistinguishable between bioturbated and non-bioturbated sediments. A large terrestrial fraction of organic matter and higher sedimentation velocity than generally found in marine sediments (0.3 +/- 0.1 cm yr-1) may partially impact these results. However, the absence of a clear effect of bioturbation on total P burial puts into question the presumed importance of bioturbation for phosphorus burial.
Located in Library / RBINS Staff Publications 2021
Techreport Reference Bird monitoring at the Belgian offshore wind farms: results after five years of impact assessment
Located in Library / RBINS Staff Publications
Inbook Reference Bird radar study in the Belgian part of the North Sea: Developments to improve bird detection
Located in Library / RBINS Staff Publications 2016
Article Reference BIRDIE: A data pipeline to inform wetland and waterbird conservation at multiple scales
Introduction: Efforts to collect ecological data have intensified over the last decade. This is especially true for freshwater habitats, which are among the most impacted by human activity and yet lagging behind in terms of data availability. Now, to support conservation programmes and management decisions, these data need to be analyzed and interpreted; a process that can be complex and time consuming. The South African Biodiversity Data Pipeline for Wetlands and Waterbirds (BIRDIE) aims to help fast and efficient information uptake, bridging the gap between raw ecological datasets and the information final users need. <br /><br /> Methods: BIRDIE is a full data pipeline that takes up raw data, and estimates indicators related to waterbird populations, while keeping track of their associated uncertainty. At present, we focus on the assessment of species abundance and distribution in South Africa using two citizen-science bird monitoring datasets, namely: the African Bird Atlas Project and the Coordinated Waterbird Counts. These data are analyzed with occupancy and state-space models, respectively. In addition, a suite of environmental layers help contextualize waterbird population indicators, and link these to the ecological condition of the supporting wetlands. Both data and estimated indicators are accessible to end users through an online portal and web services. <br /><br /> Results and discussion: We have designed a modular system that includes tasks, such as: data cleaning, statistical analysis, diagnostics, and computation of indicators. Envisioned users of BIRDIE include government officials, conservation managers, researchers and the general public, all of whom have been engaged throughout the project. Acknowledging that conservation programmes run at multiple spatial and temporal scales, we have developed a granular framework in which indicators are estimated at small scales, and then these are aggregated to compute similar indicators at broader scales. Thus, the online portal is designed to provide spatial and temporal visualization of the indicators using maps, time series and pre-compiled reports for species, sites and conservation programmes. In the future, we aim to expand the geographical coverage of the pipeline to other African countries, and develop more indicators specific to the ecological structure and function of wetlands.
Located in Library / RBINS Staff Publications 2023
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere.
Located in Library / No RBINS Staff publications
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere
Located in Library / RBINS Staff Publications 2020
Article Reference Bizarre fossil beaked whales (Odontoceti, Ziphiidae) fished from the Atlantic Ocean floor off the Iberian Peninsula
Located in Library / RBINS Staff Publications
Inbook Reference Blue mussel Mytilus edulis as habitat provider on offshore wind turbine foundations
We compare the species composition of the early (mussels not prevalent) and mature (mussels prevalent) subtidal colonizing communities at offshore windturbine foundations with special attention to the mobility and habitat preferences of the colonizing species. We identified 47 species belonging to nine different phyla from the samples of the mature community, including 21 species unique to the secondary substratum provided by the mussel shell, all of them are sessile species. Only 17 of the 37 species identified from the early subtidal colonizing community were present in the mature community. The main phyla present in both the early and mature samples were Mollusca, Arthropoda, and Annelida. Our findings confirm the hypothesis that mussels counteract the impoverishment of total species richness on wind turbines, caused by the abundant presence of Metridium senile in mature artificial hard substratum communities by providing secondary substratum for colonization by. sessile and hemi-sessile epifauna. The species assemblage found on these mussels is different from the one previously found on the piles, and only seventeen species (~36%) present in the mature community were already present in the first year after installation. In 2020, all bryozoan species (7) were exclusively observed on the secondary substratum provided by the shells of the mussels. However, these species were previously encountered on the scour protection or on the shells of other bivalves. This may be due to the fact that the secondary substratum provided by the mussels differs in physical properties (e.g., microhabitat complexity) from the primary (vertical) substratum of the pile.
Located in Library / RBINS Staff Publications 2021
Article Reference Boekbespreking: De Nederlandse breedvoetvliegen en basterdbreedvoetvliegen (Platypezidae & Opetiidae) Entomologische tabellen Volume 10.
Located in Library / RBINS Staff Publications 2017
Article Reference Book review Climate forcing of geological hazards, Bill McGuire and Mark Maslin eds. Wiley 2013.
Located in Library / RBINS Staff Publications