-
Continuity in intestinal parasite infection in Aalst (Belgium) from the medieval to the early modern period (12th-17th centuries)
-
Located in
Library
/
RBINS Staff Publications 2023
-
Multiple genetic species in a halophilic non-marine ostracod (Crustacea)
-
The discovery of animal genetic (mostly also cryptic) species has known an exponential increase since molecular techniques became available. Also in non-marine ostracods (small, bivalved crustaceans with an excellent fossil record), several morphospecies have been shown to comprise several genetic species. Here, we screen 13 populations from Central Europe and the circum-Mediterranean region of the halophilic continental ostracod species Heterocypris salina with DNA sequences from a mitochondrial (COI) and a nuclear (28S) marker. We apply four species delimitation methods to show that this nominal species consists of four genetic species in both DNA datasets, and that these two sets of genetic species show mitonuclear discordance. Most investigated specimens belonged to one of these four genetic species. There was no clear correlation between geographic and genetic distances, but we found that, apart from historical processes, environmental factors such as ecoregion, seasonality and salinity might have been important drivers shaping discrete genetic diversity. Following the palaeontological literature, the H. salina species cluster is at least 11–9 Myr old.
Located in
Library
/
RBINS Staff Publications 2024
-
The Ostracod Clumped-Isotope Thermometer: A Novel Tool to Accurately Quantify Continental Climate Changes
-
This study presents a methodological advancement in the field of clumped-isotope (∆47) thermometry, specifically tailored for application to freshwater ostracods. The novel ostracod clumped isotope approach enables quantitative temperature and hydrological reconstruction in lacustrine records. The relationship between ∆47 and the temperature at which ostracod shell mineralized is determined by measuring ∆47 on different species grown under controlled temperatures, ranging from 4 ± 0.8 to 23 ± 0.5ºC. The excellent agreement between the presented ∆47 ostracod data and the monitored temperatures confirms that ∆47 can be applied to ostracod shells and that a vital effect is absent outside the uncertainty of measurements. Results are consistent with the carbonate clumped-isotope unified calibration (Anderson et al., 2021, https://doi.org/10.1029/2020gl092069), therefore, an ostracod-specific calibration is not needed. The ostracod clumped-isotope thermometer represents a powerful tool for terrestrial paleoclimate studies all around the world, as lakes and ostracods are found in all climatic belts.
Located in
Library
/
RBINS Staff Publications 2024
-
Evidence for a single population expansion event across 24,000 km: the case of the deep‑sea scavenging amphipod Abyssorchomene distinctus
-
Anthropogenic activities such as mining pose a putative threat to deep-sea ecosystems and baseline studies of key indicator species are required to assess future loss of biodiversity. We examined population genetic structure, connectivity, cryptic diversity and phylogeography of the deep-sea scavenging amphipod, Abyssorchomene distinctus, using DNA sequence data (mitochondrial COI and nuclear 28S genes) from 373 specimens collected from six abyssal basins. We observed a striking absence of cryptic diversity, suggesting a single, widely distributed species in the Pacifc and Indian Ocean. A single event of population expansion across distances up to 24,000 km is further supported by a main ancestral haplotype in the star-like shaped COI haplotype network, a skewed nucleotide mismatch distribution and deviations from evolutionary neutrality tests. In the Pacifc, A. distinctus showed weak genetic population structure and low diferentiation between the basins of the Clarion-Clipperton Zone and the DISCOL Experimental Area, suggesting a possible higher chance of recovery from deep-sea mining impacts. However, since our data indicate a single recent historic population expansion event, A. distinctus populations will likely be afected to unknown extents, as the exact drivers shaping distribution and dispersion of A. distinctus are still unclear
Located in
Library
/
RBINS Staff Publications 2024
-
An endemic species flock of Candonidae Kaufmann, 1900 (Crustacea, Ostracoda) from wells in Benin (West Africa), with the description of a new subfamily, a new genus and five new species
-
Between 2015 and 2022, over 200 wells were sampled in four catchment areas of Benin, using both Cvetkov plankton nets (funnel 200 μm mesh size, 150 μm below valve) and baited traps. As artificial wells serve as ecotones (interfaces between surface and groundwater ecosystems), the ostracod fauna is mostly represented by two families; Cyprididae (mainly epigeic) and Candonidae (hypogeic). Here, we describe a new subfamily of Candonidae from the wells in Benin, the Benincandoninae subfam. nov. Hotèkpo & Martens, represented by one genus, Benincandona gen. nov. Hotèkpo & Martens. we found 35 species belonging to this evolutionary radiation, of which we describe five new species: Benincandona martini gen. et spec. nov. Hotèkpo & Martens, B. ibikounlei gen. et spec. nov. Hotèkpo & Martens, B. sakitii gen. et spec. nov. Hotèkpo & Martens, B. cebios gen. et spec. nov. Hotèkpo & Martens and B. trapezoides gen. et spec. nov. Hotèkpo & Martens. The new subfamily and genus are characterised by a unique combination of characters, such as a seven-segmented antennula and a caudal ramus with a fully developed ramus, a single apical (anterior) claw and three short setae. Species within the genus can be distinguished by their carapace and hemipenis morphology, together with some limb characteristics. whereas extensive subterranean candonid radiations have previously been reported from Europe, North and Central America and Northwest Australia (Pilbara), this is the first time such a vast radiation of subterranean candonids is reported from (west) Africa.
Located in
Library
/
RBINS Staff Publications 2024
-
Local factors drive the richness, biomass and composition of benthic invertebrate communities in Neotropical reservoirs
-
Dams affect aquatic biota in running water by altering the environmental dynamics. One of the communities affected are benthic invertebrates, that perform important functions such as nutrient cycling and energy transfer in reservoirs. We investigated the influence of the following factors: spatial, abiotic variables, reservoir characteristics and land use on the richness, biomass and composition of benthic invertebrates in 29 reservoirs in southern Brazil. Sediment samples and abiotic variables were collected in the littoral and profundal zones of reservoirs during the dry (July) and rainy (November) seasons in 2001. We used principal coordinates of neighbour matrices to obtain the spatial factors. We analysed the unique and overall effects of the four factors. We found that the factors analysed significantly influenced the composition and biomass of the invertebrates (22%). The percentage of variation explained by the unique effects of the different factors showed similar values, but the spatial factors showed the highest value (4%). This indicates that closer reservoirs have higher similarities in terms of composition and biomass of benthic invertebrates. On the other hand, the abiotic variables had the highest explained value when evaluating the overall effects (10%). Therefore, for invertebrate richness, only the reservoir characteristics were significant for the overall and unique effects (49%). More specifically, we observed lower taxon richness in older reservoirs, probably because the age of such artificial aquatic ecosystems influences other variables, which structure the benthic communities. In conclusion, the structure of benthic invertebrate communities in reservoirs of southern Brazil are mainly driven by spatial and reservoir characteristics.
Located in
Library
/
RBINS Staff Publications 2024
-
Hematodinium perezi (Dinophyceae: Syndiniales) in Morocco: The First Record on the African Atlantic Coast and the First Country Record of a Parasite of the Invasive Non-Native Blue Crab Callinectes sapidus
-
Dinoflagellates belonging to the genus Hematodinium are key parasites of marine crustaceans, primarily decapods. In this study, we document the first report of H. perezi Chatton & Poisson, 1930 on the African Atlantic coast. This is also the first parasite record in the invasive non-native Atlantic blue crab Callinectes sapidus Rathbun, 1896 in Morocco. Specimens of C. sapidus were sampled in winter 2023 from two Ramsar sites on the Moroccan Atlantic, namely Merja Zerga and Oualidia Lagoons, and were screened to detect the presence of parasites in their hemolymph. Based on staining fresh hemolymph smears, we did not detect Hematodinium in any of the 36 investigated individuals (20 and 16 from Merja Zerga and Oualidia Lagoons, respectively), probably due to methodological artifacts. The PCR-based method was revealed to be more accurate in diagnosing the Hematodinium parasite. It showed that at Merja Zerga Lagoon, 13 individuals of C. sapidus were infected by the parasite (prevalence: 65%) in comparison to four at Oualidia Lagoon (25%). Genetic analysis, based on the ITS1 rDNA gene from Hematodinium, confirmed the sequences as being those of Hematodinium perezi.
Located in
Library
/
RBINS Staff Publications 2024
-
Otolith morphology of mesopelagic fishes collected from the Irminger Sea, North Atlantic Ocean
-
A large series of otoliths of 16 mesopelagic teleost fish species from the Irminger Sea, North Atlantic Ocean, are described morphologically to investigate the ontogenetic and intraspecific variation. The results show that the surface morphology of the otoliths between young and adult specimens is variable, especially in the alepocephaliform (Normichthys operosus, Sagamichthys schnakenbecki, Xenodermichthys copei) and astronesthine (Borostomias antarcticus) species. The diagnostic features of the otoliths can be used to confirm the identity of the species, especially in myctophids, where confusion between Benthosema glaciale and Myctophum punctatum may be possible. A SEM-based iconography of the otoliths of all studied species is presented.
Located in
Library
/
RBINS Staff Publications 2024
-
New lizard from the Early Eocene Vastan Lignite mine of India
-
The lower Eocene (Ypresian) Cambay Formation at Vastan Lignite Mine in Gujarat, western India, has yielded a rich vertebrate assemblage including the earliest modern mammals and oldest birds of the Indian subcontinent. Among the herpetological faunas, snakes, lizards and amphibians are abundant, but, strangely, lizards are only represented by agamids. Here we describe the agamid assemblage based on numerous, diverse and well-preserved dentaries, premaxillaries, and maxillaries. At least four taxa are present at Vastan. Vastanagama susanae is characterized by dentaries with a large symphyseal facet, three anterior pleurodont teeth followed by acrodont teeth presenting a main cusp bordered by two lateral crests; the teeth increase in size posteriorly toward the coronoid process. Tinosaurus indicus exhibits a subdental ridge between the tooth row and the Meckelian canal, pleurodont symphyseal teeth including one that can be caniniform, and acrodont and tricuspid posterior teeth with poorly differentiated lateral cusps. Two other taxa represent two new genera and species. The first taxon presents multicuspid acrodont teeth with the main cusp surrounded by two or three progressively smaller lateral cusps. The second taxon presents pleurodont anterior teeth followed by a few acrodont teeth and ending with three or four subacrodont teeth near the coronoid process. Our results confirm that Agamidae (assigned to the Acrodonta) is the only lizard group present at Vastan, whereas many other groups are already present in the Early Eocene on the other continents. Agamidae is considered to have had a Gondwanan origin, with 52 genera and 420 species of extant agamids known from Asia, Australia, Africa and a few from Southern Europe. The oldest occurrence of formally recognized Acrodonta is found in the Jurassic of India. Other fossil agamids are known in the Upper Paleocene of Kazakhstan, Paleocene and Eocene of China, Early Eocene of Europe, Eocene of North America, and Middle Eocene of Pakistan. The diversity of the agamids in India and the absence of other lizard groups at Vastan tentatively support the Out-of-India hypothesis for agamids.
Located in
Library
/
RBINS Staff Publications
-
New bats (Chiroptera) from the Earliest Oligocene Boutersem-TGV locality in Belgium document the earliest occurence of Myotis
-
Early Oligocene mammals from Europe are not well known. In Belgium this interval (reference level MP 21) is represented by four coeval localities, Boutersem, Boutersem-TGV, Hoogbutsel and Hoeleden. Included in a vertebrate assemblage of 20+ mammalian genera, one bat, Quinetia misonnei, has been previously described from Hoogbutsel, based on four lower dentitions. Twenty new specimens of Quinetia were recently recovered from Boutersem-TGV including six upper molars, a humerus, and thirteen lower dentitions. These new specimens confirm that Quinetia is a plecotine vespertilionid and consequently represents the earliest known occurrence of this tribe. Additionally, twenty five other dental specimens document the presence of a larger vespertilionid from Boutersem-TGV. These specimens are assigned to Myotis based on the primitive 3.1.3.3 dental formula, the presence of a single-rooted p3, myotodont lower molars, a relatively high crowned lower canine with well-developed mesial and distolingual shelves, M1 and M2 lacking both paraconules and metalophs, protofossa of M1 and M2 open posteriorly, and M3 being relatively short. The Boutersem-TGV Myotis specimens represent the earliest known record of this extant genus. Only some isolated potential myotine teeth from Le Batut (MP 19) in France are older but these teeth differ from Myotis in having upper molars with a paraloph and a protofossa closed posteriorly, both features more typical of the enigmatic “Leuconoe”. Myotodont species, such as “L”. salodorensis from Oensingen (MP 25) in Switzerland and “L”. lavocati from Le Garouillas (MP 25-28) in France, both share features of upper teeth that distinguish them from Myotis. Younger still are three Myotis species from Herrlingen 8-9 (MP 29) in Germany. Compared to the Boutersem-TGV Myotis, M. minor is much smaller with a relatively smaller, shorter and more delicate p4, M. intermedius is somewhat smaller in molar dimensions but with a substantially smaller and shorter p4, while M. major has larger m1-2, similar sized m3, smaller p4, more robust M1 and a more constricted P4 lingual shelf. The origin of Myotis appears to be at least as old as the earliest Oligocene.
Located in
Library
/
RBINS Staff Publications