The ubiquitous sea cucumber Holothuria (Thymiosycia) arenicola Semper, 1868, externally characterized by a double row of dark blotches of various sizes on its dorsal body wall and a cryptic behaviour, is generally assumed to have a wide tropical distribution, although it has not been reported from the Eastern tlantic. Careful morphological examination, with emphasis on the ossicle assemblage, of type and non-type H. arenicola specimens sampled in the Indian, Pacific and tlantic Ocean, its subjective synonyms and species with a similar colouration and habit, revealed that H. arenicola is often confused with other species. This paper formally separates the different species in the H. arenicola complex, one of them being a species new to science: Holothuria (Thymiosycia) kerriensis sp. nov. dditionally, we describe two other species that are often confused with H. arenicola: Holothuria (Lessonothuria) gracilis Semper, 1868 and H. (Thymiosycia) strigosa Selenka, 1867. The H. arenicola complex per se is keyed-out, with the ossicle assemblage of the musculature being recognised as an important, previously largely neglected, guide. This contribution highlights the importance of building and curating well-maintaned natural history collections to understand biodiversity through time and space.
Located in
Library
/
RBINS Staff Publications 2024
Biofluorescence, the phenomenon where organisms absorb short wavelengths of light and re-emit longer wavelengths, has been documented in various reptile and amphibian groups. This study reports the first observation of UV-induced biofluorescence in the genus Tribolonotus (crocodile skinks), marking the first such report for the family Scincidae. Specimens of Tribolonotus novaeguineae, T. brongersmai, and T. gracilis were examined under UV light, revealing distinct fluorescence patterns. The fluorescence is primarily bone-induced, linked to the presence of osteoderms, although some skin-based fluorescence was also observed, particularly around the eyes. The study suggests potential ecological roles for this fluorescence, such as intraspecific signaling or predator-prey interactions, and highlights the need for further research to understand the functional significance of biofluorescence in these skinks.
Located in
Library
/
RBINS Staff Publications 2024