Skip to content. | Skip to navigation

Personal tools

You are here: Home
967 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Original articleSystematics and diversity of the giant soft-shelled turtles (Cryptodira,Trionychidae) from the earliest Eocene of Belgium
In 1909, the famous paleontologist Louis Dollo identified two putative new species of giant soft-shelled turtles from the lowest Eocene record of Belgium, ‘Trionyx erquelinnensis’ and ‘Trionyx levalensis’, from Erquelinnes and Leval, respectively. However, these proposals did not meet the requirements of the International Code of Zoological Nomenclature, so they were considered as nomina nuda. The information on these specimens or about any other specimen of this lineage of giant turtles from the Belgian record is currently extremely limited. Relatively scarce material from giant trionychids has been described for the lower Eocene record of other European regions. Considering the available information, all the European material has recently been recognized as belonging to the genus Axestemys, which has a North American origin, and possibly attributable to a single species, Axestemys vittata, which currently lacks a diagnosis. Numerous and well-preserved Belgian specimens are deposited in the Royal Belgian Institute of Natural Sciences. In addition to the cited individuals from Erquelinnes and Leval, additional specimens from both localities, as well as others from Orp-le-Grand, are part of this collection. These specimens, found between the decades of 1910 and 1930, have been recently restored, and their study is carried out here. The presence of Axestemys vittata in Belgium (in Leval and Orp-le-Grand) is confirmed. Knowledge about this species is significantly improved, and a diagnosis is proposed. However, the hypothesis proposed by Dollo is here confirmed, this species being not the only identified in the Belgian record. So, Axestemys erquelinnensis nov. sp. is defined based on the carapace from Erquelinnes known by Dollo, suggesting that the genus probably reached Europe during the Paleocene Eocene Thermal Maximum.
Located in Library / RBINS Staff Publications 2021
Article Reference Foreword for the thematic volume of the PalEurAfrica project international symposium Evolution and paleoenvironment of early modern vertebrates during the Paleogene
-
Located in Library / RBINS Staff Publications 2021
Article Reference A new partial skeleton of Kryptobaatar from the Upper Cretaceous of Bayan Mandahu (Inner Mongolia, China) relaunch the question about variability in djadochtatherioid multituberculate mammals
A new well-preserved partial skeleton of the djadochtatheriid multituberculate Kryptobaatar is here described from the Campanian Bayan Mandahu Formation of the southern Gobi Basin in Inner Mongolia, China. We refer to it as Kryptobaatar sp. because it presents characters that are specific to Kryptobaatar dashzevegi and others specific to Kryptobaatar mandahuensis, as well as characters of its own. When those taxa are incorporated into a phylogenetic analysis of the Djadochtatherioidea, the Kryptobaatar species appear to be paraphyletic. This raises again questions about the high intraspecific variability in some multituberculates. Based on a comparison with the published specimens, we conclude that K. mandahuensis is a valid species, close to but distinct from K. dashzevegi. Our results also suggest that endemism alone in the Gobi Basin is not the cause of the high variability observed in the genus Kryptobaatar. But the impact of a possible difference in age or paleoenvironment between the different Kryptobaatar-bearing sites of the Gobi Desert is, for the moment, not possible to test in the current state of knowledge.
Located in Library / RBINS Staff Publications 2022
Article Reference A New Mammal Skull from the Late Cretaceous of Romania and Phylogenetic Affinities of Kogaionid Multituberculates
Among the Late Cretaceous fossil sites of Europe, only those from the so-called “Haţeg Island” in Transylvania, western Romania, are remarkable by their abundance in mammal remains. Curiously, all of them belong to a single family of multituberculates, the Kogaionidae, one of the rare families that survived the Cretaceous-Paleogene mass extinction in Europe. Kogaionids are mostly represented by isolated teeth except for three partial large skulls from the Maastrichtian Sânpetru Formation of the Haţeg Basin that have been described from the Sânpetru locality as Kogaionon ungureanui and from the Pui locality as Barbatodon transylvanicus and Litovoi tholocephalos. Here we report for the first time the discovery of a partial skull associated with p4 of a small-sized kogaionid from the Nălaţ-Vad locality in the Sânpetru Formation that we refer to Kogaionon radulescui, sp. nov. An updated phylogenetic analysis, including seven Maastrichtian and Paleocene kogaionids is performed and confirms that Kogaionidae is a monophyletic clade at the base of Cimolodonta. Kogaionon differs from Barbatodon in its narrower snout, proportionally smaller P1, narrower anterior part of P4 with four similar-sized cusps in the middle row, more squared or rounded M1 with an anteroposteriorly longer lingual row, and shorter p4 (at least for K. radulescui). Litovoi tholocephalos is here considered to be a junior synonym of B. transylvanicus. Despite their Maastrichtian age, the very simple and conservative dental morphology of these Romanian kogaionids suggests that they originated from an eobaatarid-like ancestor dispersing from Asia or possibly already existing in Europe between the Barremian and Albian, 40 to 55 Ma earlier.
Located in Library / RBINS Staff Publications 2021
Article Reference A new basal raoellid artiodactyl (Mammalia) from the middle Eocene Subathu Group of Rajouri District, Jammu and Kashmir, northwest Himalaya, India
A new artiodactyl of moderate size, Rajouria gunnelli nov. gen., nov. sp., is described on the basis of several dentaries, maxillae and isolated teeth from the middle Eocene Subathu Group of the Kalakot area, Rajouri District, Jammu and Kashmir, India. Despite its general resemblance with the family Dichobunidae by the retention of a paraconid on m1-2 and a simple P4 where endocristids do not form an anterior loph, this taxon shares with Raoellidae two unambiguous characters: the presence of a hypoconid on p4, and an asymmetrical P4. The phylogenetic position of the new taxon within the Cetacea–Raoellidae clade is strongly supported by seven non ambiguous synapomorphies, among which a cristid obliqua on lower molars anteriorly pointing towards the postectoprotocristid, and a P3 with only two roots. The presence of a new basal raoellid in the middle Eocene Subathu Group sheds new light on the phylogeny and paleobiogeography of raoellid artiodactyls.
Located in Library / RBINS Staff Publications 2021
Article Reference Presence of the large aquatic snake Palaeophis africanus in the middle Eocene marine margin of the Congo Basin, Cabinda, Angola
Ten isolated snake vertebrae from Landana and Sassa-Zao, Cabinda Exclave, Angola, present a ‘‘primitive” grade morphology with a weak lateral compression and do not belong to Palaeophis aff. typhaeus as originally referred to. They well belong to a single taxon and are here attributed to Palaeophis africanus for which the intracolumnar variation is described and illustrated. This species is Lutetian (middle Eocene) in age and originates from a marine coastal environment confirming again the aquatic capabilities of palaeophiid snakes. It represents the third largest species of Palaeophis with P. colossaeus and P. maghrebianus to which it is closely related in our tentative phylogenetic analysis, indicating that these three taxa could belong to an African clade. This study also contributes to the debate on the existence of primitive and advanced grades among palaeophiid snakes. Palaeophis presents laterally compressed anterior trunk vertebrae that could have been often erroneously considered as representing advanced grade species and potential parataxonomy.
Located in Library / RBINS Staff Publications 2021
Article Reference Additional vertebral material of Thaumastophis (Serpentes: Caenophidia) from the early Eocene of India provides new insights on the early diversification of colubroidean snakes
The Ypresian Cambay Shale Formation at Vastan, Mangrol, and Tadkeshwar lignite mines in Gujarat, western India, has yielded a rich vertebrate fauna including madtsoiid, palaeophiid, booid, and colubroideanlike snakes. The latter are particularly abundant, but their systematic affinities are difficult to resolve. Here we describe new specimens of the colubroidean-like snake Thaumastophis missiaeni, including anterior, middle, and posterior trunk vertebrae, as well as caudal vertebrae. The combination of primitive and derived caenophidian and colubroidean vertebral characters confirms Thaumastophis as the earliest known stem-colubriform snake while Procerophis, from the same beds, is more derived and considered to represent a crown-Colubriformes. Additionally, Thaumastophis shares with Renenutet enmerwer from the late Eocene of Egypt a unique combination of vertebral characters that suggests an exchange with North Africa was possible along the southern margin of the Neotethys. We erect the new family Thaumastophiidae for Thaumastophis and Renenutet on the basis of their shared derived vertebral morphology.
Located in Library / RBINS Staff Publications 2021
Article Reference From toad to frog, a CT-based reconsideration of Bufo servatus, an Eocene anuran mummy from Quercy (France)
In the 19th century, natural mummies of amphibians were discovered in the Quercy Phosphorites. The specific collection site was never formally reported, which hampers precise dating of these specimens. Still, the name Bufo servatus was erected based on the external morphology of one of the mummified specimens. A tomography of a similarly preserved specimen revealed a preserved skeleton, soft tissues and gut contents. We analyze here the holotype of Bufo servatus using CT-scanning in order to investigate its potentially preserved internal features. Like the previous specimen, a subcomplete articulated skeleton was identified in the B. servatus holotype. Surprisingly, this skeleton is almost identical to that of Thaumastosaurus gezei, an Eocene anuran from Western Europe to which other specimens from this mummy series were previously assigned. The few differences between the specimen skeletons highlight ontogenetic and intraspecific variations, making T. gezei a junior synonym of B. servatus and creating the new combination Thaumastosaurus servatus. Given its association with previously described Quercy specimens, this redescribed anuran is probably from the same time interval as T. gezei. Previous phylogenetic analyses assigned T. servatus to Ranoides, with natatanuran affinities. Using data from this newly described specimen, we tested here further its taxonomic affinities. Our analyses confirm this position, and formally identify T. servatus as a Natatanuran member of Pyxicephalidae (currently endemic of equatorial Africa) and more precisely, a stem-Pyxicephalinae. This result confirms the origin of Thaumastosaurus, a member of the African herpetofauna occupying Western Europe before the Grande Coupure at the Eocene/Oligocene transition.
Located in Library / RBINS Staff Publications 2021
Article Reference South American and Trinidadian terrestrial Gastropoda in the collection of the Museum of New Zealand Te Papa Tongarewa
Located in Library / RBINS Staff Publications 2021 OA
Techreport Reference Een biodiversiteitsaudit voor het Bos t’Ename na een Alle Taxa Biodiversiteit Inventarisatie en 30 jaar natuurbeheer
Located in Library / RBINS Staff Publications 2021 OA