The faunal remains are described from Nkile and Bolondo, two archaeological sites in the equatorial rainforest of the Democratic Republic of Congo. Both river-side settlements, located in the Ruki-Tshuapa basin and dating to between the 14th century to the second half of the 20th century, show a heavy reliance on aquatic food resources. The animal remains show that fishing was a major subsistence activity, whereas hunting, slaughtering of domestic stock and harvesting of molluscs were less frequent activities. The contribution to the diet of the different animal taxa suggested by the zooarchaeological data is in line with recently published stable isotope results obtained on humans and animals from Bolondo. The type of fish, and in particular their reconstructed sizes, show that the major exploited fishing grounds were shallow waters that became accessible during the low water seasons (nowadays July-August and a minor season in March at both sites). The proportions of the exploited fish taxa are comparable to those marketed nowadays in larger urban centres. Juvenile fish, and to some extent, small crocodiles, were heavily exploited but it is argued that at the time this was still a sustainable activity that did not deplete the fauna as much as today since human populations were smaller and the fishing gear less effective.
Located in
Library
/
RBINS Staff Publications 2022
Accurate species identification is crucial in the One Health framework because it underpins the ability to effectively monitor, prevent, and mitigate the emergence and spread of human and animal infectious diseases and zoonoses. Moreover, misidentification can lead to inadequate risk assessments, allowing infectious agents or invasive alien species to spread undetected, thereby threatening biodiversity, ecosystem stability, and public health. BopCo is a Belgian research unit that provides such accurate identifications of organisms and biological tissues with relevance for policy and decision-making processes. It is jointly run by the Royal Belgian Institute of Natural Sciences and the Royal Museum for Central Africa, and has access to extensive reference collections, expert taxonomists, and a comprehensive research infrastructure. BopCo uses morphology and DNA-based approaches to handle on-demand species identification requests, and it is a partner on various projects within the One Health context. In this framework, BopCo contributes to identifying the introduction pathways and dispersal dynamics of two invasive mosquito species in Belgium, Aedes albopictus and Ae. japonicus, as part of the MEMO+ project in collaboration with Sciensano and the Institute of Tropical Medicine. Using various DNA identification techniques, BopCo verifies the species identity of the exotic mosquitoes collected at multiple points of entry. Similarly, the Medical Component of the Belgian Armed Forces is investigating the Culicidae mosquito biodiversity at foreign deployment sites. BopCo takes part in this project by providing DNA-based identifications to support the Laboratory for Vector-Borne Diseases of the Queen Astrid Military Hospital. Accurate identification of the various mosquito species is important since they are known vectors of pathogens of significant public health concern such as Western Nile virus, Plasmodium parasites, and dengue virus. Furthermore, BopCo is involved in the monitoring of (exotic) animal product imports into Belgium within the INTERCEPT project, in collaboration with the University of Antwerp. Within this project, meat intercepted from passenger’s luggage at Brussels Airport was sampled and identified using DNA barcoding to prevent the import of transmittable animal diseases and the introduction of invasive alien species. Finally, BopCo contributed to the discovery of the first occurrence of Trichobilharzia regenti in Belgium, a blood parasite of birds, which may try to infect humans, triggering painful skin lesions known as “swimmer’s itch”. Following a reported case in Kampenhout, Belgium, researchers at the Royal Museum for Central Africa and KU Leuven captured freshwater snails (the intermediate hosts) and performed a shedding experiment, after which BopCo used a DNA analysis to identify the shed parasites, unveiling the presence of T. regenti. BopCo continually seeks partnerships with research institutes and government agencies to deliver accurate species identifications within a One Health framework and other policy-relevant research contexts.
Located in
Library
/
RBINS Staff Publications 2025
The Sweet potato weevils of the genus Cylas are the most destructive pests of sweet potato and are widely distributed in Africa. The aim of this study was to identify and document the species of Cylas occurring in sweet potato production zones in Ghana. A survey was conducted in 23 localities in 2015 from July to December in seven regions in Ghana in order to determine the identity of the pest. We collected nine thousand and two specimens from Central, Eastern, Greater-Accra, Northern, Volta, Upper-East, and the Upper-West regions. Two species were identified: Cylas brunneus Fabricius, 1797 and Cylas puncticollis Boheman, 1833. Cylas puncticollis occurred in all regions and represented 6,107 specimens (68%), while 2,895 of the specimens (32%) could be assigned to C. brunneus. The latter is restricted to the southern sector including Volta, Central, Eastern and Greater Accra Regions. When considering both species in the southern sector, the Volta Region accounted for 3,117 specimens (48%) followed by 1,447 (22%), 987 (15%), and 980 (15%), from the Central, Eastern, and Greater-Accra Regions, respectively. The dominant species in southern and northern sector was C. puncticollis.
Located in
Library
/
RBINS Staff Publications 2016