Skip to content. | Skip to navigation

Personal tools

You are here: Home
620 items matching your search terms.
Filter the results.
Item type

New items since

Sort by relevance · date (newest first) · alphabetically
Article Reference Advancing the Catalogue of the World’s Natural History Collections
Information about natural history collections helps to map the complex landscape of research resources and assists researchers in locating and contacting the holders of specimens. Collection records contribute to the development of a fully interlinked biodiversity knowledge graph (Page 2016), showcasing the existence and importance of museums and herbaria and supplying context to available data on specimens. These records also potentially open new avenues for fresh use of these collections and for accelerating their full availability online.A number of international (e.g., Index Herbariorum, GRSciColl) regional (e.g. DiSSCo and CETAF) national (e.g., ALA and the Living Atlases, iDigBio US Collections Catalog) and institutional networks (e.g., The Field Museum) separately document subsets of the world's collections, and the Biodiversity Information Standards (TDWG) Collection Descriptions Interest Group is actively developing standards to support information sharing on collections. However, these efforts do not yet combine to deliver a comprehensive and connected view of all collections globally.The Global Biodiversity Information Facility (GBIF) received funding as part of the European Commission-funded SYNTHESYS+ 7 project to explore development of a roadmap towards delivering such a view, in part as a contribution towards the establishment of DiSSCo services within a global ecosystem of collection catalogues. Between 17 and 29 April 2020, a coordination team comprising international representatives from multiple networks ran Advancing the Catalogue of the World’s Natural History Collections, a fully online consultation using the GBIF Discourse forum platform to guide discussion around 26 consultation topics identified in an initial Ideas Paper (Hobern et al. 2020). Discussions included support for contributions in Spanish, Chinese and French and were summarised daily throughout the consultation.The consultation confirmed broad agreement around the needs and goals for a comprehensive catalogue of the world’s natural history collections, along with possible strategies to overcome the challenges. This presentation will summarise the results and recommendations.
Located in Library / RBINS Staff Publications 2020
Article Reference Aegosoma maopaseuthi n. sp., nouveau Cerambycidae du Laos (Coleoptera, Cerambycidae, Prioninae, Aegosomatini)
Located in Library / RBINS Staff Publications 2022
Article Reference African lates perches (Teleostei, Latidae, Lates): Paraphyly of Nile perch and recent colonization of Lake Tanganyika
Located in Library / RBINS Staff Publications 2021
Article Reference Algal Taxonomy: a road to nowhere?
The widespread view of taxonomy as an essentially retrogressive and outmoded science unable to cope with the current biodiversity crisis stimulated us to analyze the current status of cataloguing global algal diversity. Contrary to this largely pessimistic belief, species description rates of algae through time and trends in the number of active taxonomists, as revealed by the web resource AlgaeBase, show a much more positive picture. More species than ever before are being described by a large community of algal taxonomists. The lack of any decline in the rate at which new species and genera are described, however, is indicative of the large proportion of undiscovered diversity and bears heavily on any prediction of global algal species diversity and the time needed to catalogue it. The saturation of accumulation curves of higher taxa (family, order, and classes) on the other hand suggest that at these taxonomic levels most diversity has been discovered. This reasonably positive picture does not imply that algal taxonomy does not face serious challenges in the near future. The observed levels of cryptic diversity in algae, combined with the shift in methods used to characterize them, have resulted in a rampant uncertainty about the status of many older species. As a consequence, there is a tendency in phycology to move gradually away from traditional names to a more informal system whereby clade-, specimen- or strain-based identifiers are used to communicate biological information. Whether these informal names for species-level clades represent a temporary situation stimulated by the lag between species discovery and formal description, or an incipient alternative or parallel taxonomy, will be largely determined by how well we manage to integrate historical collections into modern taxonomic research. Additionally, there is a pressing need for a consensus about the organizational framework to manage the information about algal species names. An eventual strategy should preferably come out of an international working group that includes the various databases as well as the various phycological societies. In this strategy, phycologists should link up to major international initiatives that are currently being developed, such as the compulsory registration of taxonomic and nomenclatural acts and the introduction of Life Science Identifiers.
Located in Library / RBINS Staff Publications
Article Reference Allemaal beestjes. Studie van het dierljk bot uit een Romeinse waterput van de site Tongeren-Oost
Located in Library / RBINS Staff Publications 2022
Article Reference Ambigolimax valentianus (Férussac, 1822) à Uccle - Récit d’une naissance
Located in Library / RBINS Staff Publications 2020
Techreport Reference Analysis of oceanographic profiles taken during RV Belgica campaign ST2019/09
Located in Library / RBINS Staff Publications 2020
Techreport Reference Analysis of water column data taken during RV Belgica campaign ST2020/29
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Anatomy, Relationships, and Paleobiology of Cambaytherium (Mammalia, Perissodactylamorpha, Anthracobunia) from the lower Eocene of western India
The anatomy of Cambaytherium, a primitive, perissodactyl-like mammal from the lower Eocene Cambay Shale Formation of Gujarat, India, is described in detail on the basis of more than 350 specimens that represent almost the entire dentition and the skeleton. Cambaytherium combines plesiomorphic traits typical of archaic ungulates such as phenacodontids with derived traits characteristic of early perissodactyls. Cambaytherium was a subcursorial animal better adapted for running than phenacodontids but less specialized than early perissodactyls. The cheek teeth are bunodont with large upper molar conules, not lophodont as in early perissodactyls; like perissodactyls, however, the lower molars have twinned metaconids and m3 has an extended hypoconulid lobe. A steep wear gradient with heavy wear in the middle of the tooth row suggests an abrasive herbivorous diet. Three species of Cambaytherium are recognized: C. thewissi (∼23 kg), C. gracilis (∼10 kg), and C. marinus (∼99 kg). Body masses were estimated from tooth size and long bone dimensions. Biostratigraphic and isotopic evidence indicates an age of ca. 54.5 Ma for the Cambay Shale vertebrate fauna, the oldest Cenozoic continental vertebrate assemblage from India, near or prior to the initial collision with Asia. Cambaytheriidae (also including Nakusia and Perissobune) and Anthracobunidae are sister taxa, constituting the clade Anthracobunia, which is sister to Perissodactyla. We unite them in a new higher taxon, Perissodactylamorpha. The antiquity and occurrence of Cambaytherium—the most primitive known perissodactylamorph—in India near or before its collision with Asia suggest that Perissodactyla evolved during the Paleocene on the Indian Plate or in peripheral areas of southern or southwestern Asia.
Located in Library / RBINS Staff Publications 2020
Article Reference Ancestors of domestic cats in Neolithic Central Europe: Isotopic evidence of a synanthropic diet
Most of today’s domesticates began as farm animals, but cat domestication took a different path. Cats became commensal of humans somewhere in the Fertile Crescent, attracted to early farmers’ settlements by rodent pests. Cat remains from Poland dated to 4,200 to 2,300 y BCE are currently the earliest evidence for the migration of the Near Eastern wildcat to Central Europe. Tracking the possible synanthropic origin of that migration, we used stable isotopes to investigate the paleodiet. We found that the ecological balance was already changed due to the expansion of Neolithic farmlands. We conclude that among the Late Neolithic Near Eastern wildcats from Poland were free-living individuals, who preyed on rodent pests and shared ecological niches with native European wildcats.Cat remains from Poland dated to 4,200 to 2,300 y BCE are currently the earliest evidence for the migration of the Near Eastern cat (NE cat), the ancestor of domestic cats, into Central Europe. This early immigration preceded the known establishment of housecat populations in the region by around 3,000 y. One hypothesis assumed that NE cats followed the migration of early farmers as synanthropes. In this study, we analyze the stable isotopes in six samples of Late Neolithic NE cat bones and further 34 of the associated fauna, including the European wildcat. We approximate the diet and trophic ecology of Late Neolithic felids in a broad context of contemporary wild and domestic animals and humans. In addition, we compared the ecology of Late Neolithic NE cats with the earliest domestic cats known from the territory of Poland, dating to the Roman Period. Our results reveal that human agricultural activity during the Late Neolithic had already impacted the isotopic signature of rodents in the ecosystem. These synanthropic pests constituted a significant proportion of the NE cat’s diet. Our interpretation is that Late Neolithic NE cats were opportunistic synanthropes, most probably free-living individuals (i.e., not directly relying on a human food supply). We explore niche partitioning between studied NE cats and the contemporary native European wildcats. We find only minor differences between the isotopic ecology of both these taxa. We conclude that, after the appearance of the NE cat, both felid taxa shared the ecological niches.
Located in Library / RBINS Staff Publications 2020