-
A tardigrade in Dominican amber
-
Tardigrades are a diverse group of charismatic microscopic invertebrates that are best known for their ability to survive extreme conditions. Despite their long evolutionary history and global distribution in both aquatic and terrestrial environments, the tardigrade fossil record is exceedingly sparse. Molecular clocks estimate that tardigrades diverged from other panarthropod lineages before the Cambrian, but only two definitive crown-group representatives have been described to date, both from Cretaceous fossil deposits in North America. Here, we report a third fossil tardigrade from Miocene age Dominican amber. Paradoryphoribius chronocaribbeus gen. et sp. nov. is the first unambiguous fossil representative of the diverse superfamily Isohypsibioidea, as well as the first tardigrade fossil described from the Cenozoic. We propose that the patchy tardigrade fossil record can be explained by the preferential preservation of these microinvertebrates as amber inclusions, coupled with the scarcity of fossiliferous amber deposits before the Cretaceous.
Located in
Library
/
RBINS Staff Publications 2021 OA
-
Early Researchers Involved with Branchiobdellidans (Annelida: Clitellata) on Japanese Crayfish, and a Reassessment of the Taxonomic Status of Branchiobdella digitata Pierantoni, 1906
-
Located in
Library
/
RBINS Staff Publications 2020
-
Characterization of a West African coastal lagoon system: Case of Lake Nokoué with its inlet (Cotonou, South Benin)
-
Located in
Library
/
RBINS Staff Publications 2022
-
The World Amphipoda Database: History and Progress
-
Located in
Library
/
RBINS Staff Publications 2023 OA
-
Adulis and the transshipment of baboons during classical antiquity
-
Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers—Agatharchides of Cnidus, Pliny the Elder, Strabo—noted the value of Adulis to Greco-Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud (‘Valley of the Monkeys’), Egypt. Dated to ca. 800–540 BCE, these animals could extend the antiquity of Egyptian–Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable isotope analysis to show that two New Kingdom specimens of Papio hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of P. hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.
Located in
Library
/
RBINS Staff Publications 2023
-
Final Scientific Report. Take home messages and project results. Jaak Monbaliu, Tina Mertens, Annelies Bolle, Toon Verwaest, Pieter Rauwoens, Erik Toorman, Peter Troch and Vincent Gruwez (Editors)
-
Located in
Library
/
RBINS Staff Publications 2020
-
Metastrongyloid parasites of felines in naturally infected gastropods in Greece
-
Located in
Library
/
RBINS Staff Publications 2022 OA
-
Joseph Charles Hippolyte Crosse (1826-1898), 1: biography, bibliography and new taxa introduced
-
Located in
Library
/
RBINS Staff Publications 2022 OA
-
The transition between coastal and offshore areas in the North Sea unraveled by suspended particle composition
-
Identifying the mechanisms that contribute to the variability of suspended particulate matter concentrations in coastal areas is important but difficult, especially due to the complexity of physical and biogeochemical interactions involved. Our study addresses this complexity and investigates changes in the horizontal spread and composition of particles, focusing on cross-coastal gradients in the southern North Sea and the English Channel. A semi-empirical model is applied on in situ data of SPM and its organic fraction to resolve the relationship between organic and inorganic suspended particles. The derived equations are applied onto remote sensing products of SPM concentration, which provide monthly synoptic maps of particulate organic matter concentrations (here, particulate organic nitrogen) at the surface together with their labile and less reactive fractions. Comparing these fractions of particulate organic matter reveals their characteristic features along the coastal-offshore gradient, with an area of increased settling rate for particles generally observed between 5 and 30 km from the coast. We identify this area as the transition zone between coastal and offshore waters with respect to particle dynamics. Presumably, in that area, the turbulence range and particle composition favor particle settling, while hydrodynamic processes tend to transport particles of the seabed back towards the coast. Bathymetry plays an important role in controlling the range of turbulent dissipation energy values in the water column, and we observe that the transition zone in the southern North Sea is generally confined to water depths below 20 m. Seasonal variations in suspended particle dynamics are linked to biological processes enhancing particle flocculation, which do not affect the location of the transition zone. We identify the criteria that allow a transition zone and discuss the cases where it is not observed in the domain. The impact of these particle dynamics on coastal carbon storage and export is discussed.
Located in
Library
/
RBINS Staff Publications 2024 OA
-
Lessons from the calibration and sensitivity analysis of a fish larval transport model
-
ABSTRACT: Numerous fish populations show strong year-to-year variations in recruitment. The early life stages play a crucial role in determining recruitment and dispersal patterns. A helpful tool to understand recruitment and dispersal involves simulations with a Lagrangian transport model, which results from the coupling between a hydrodynamic model and an individual-based model. Larval transport models require sound knowledge of the biological processes governing larval dispersal, and they may be highly sensitive to the parameters selected. Various assumptions about larval traits, behaviour and other model parameters can be tested by comparing simulation results with field data to identify the most sensitive parameters and to improve model calibration. This study shows that biological parameterization is more important than inter-annual variability in explaining the year-to-year differences in larval recruitment of common sole in the North Sea and the eastern English Channel. In contrast, year-to-year variability of connectivity leads to higher variability than changes in the biological parameters. The most influential parameters are pelagic larval duration, spawning period and mortality. Calibration over a 12 yr recruitment survey shows that a scenario with low mortality associated with a long larval duration and behaviour involving nycthemeral and tidal migration best reproduces the observations. This research provides insights into factors influencing fish dispersal and recruitment, suggesting a strategy for enhancing the accuracy of models in upcoming studies. The study supports the improvement of larval dispersal modelling by incorporating an easily applicable sensitivity analysis for both calibration and validation. Incorporating sensitivity analyses enhances larval dispersal models, providing performing tools that can contribute to informed fisheries management and understanding of recruitment variability.
Located in
Library
/
RBINS Staff Publications 2024