-
Phylogenomics of Psammodynastes and Buhoma (Elapoidea: Serpentes), with the description of a new Asian snake family
-
Asian mock vipers of the genus Psammodynastes and African forest snakes of the genus Buhoma are two genera belonging to the snake superfamily Elapoidea. The phylogenetic placements of Psammodynastes and Buhoma within Elapoidea has been extremely unstable which has resulted in their uncertain and debated taxonomy. We used ultraconserved elements and traditional nuclear and mitochondrial markers to infer the phylogenetic relationships of these two genera with other elapoids. Psammodynastes, for which a reference genome has been sequenced, were found, with strong branch support, to be a relatively early diverging split within Elapoidea that is sister to a clade consisting of Elapidae, Micrelapidae and Lamprophiidae. Hence, we allocate Psammodynastes to its own family, Psammodynastidae new family. However, the phylogenetic position of Buhoma could not be resolved with a high degree of confidence. Attempts to identify the possible sources of conflict in the rapid radiation of elapoid snakes suggest that both hybridisation/introgression during the rapid diversification, including possible ghost introgression, as well as incomplete lineage sorting likely have had a confounding role. The usual practice of combining mitochondrial loci with nuclear genomic data appears to mislead phylogeny reconstructions in rapid radiation scenarios, especially in the absence of genome scale data.
Located in
Library
/
RBINS Staff Publications 2024
-
Late Eifelian and Early Givetian ostracod assemblages from Wellin, Hotton and On-Jemelle (Ardenne, Dinant Synclinorium, Belgium). Paleoenvironmental implications
-
Located in
Library
/
RBINS Staff Publications
-
Middle/Late Givetian ostracod assemblages from the Aisne quarry (Durbuy area, Ardenne, Belgium). Biostratigraphic and palaeoecological implications
-
Located in
Library
/
RBINS Staff Publications 2016
-
Exploitation of squirrel fur in the 11th century in Huy, Belgium
-
Located in
Library
/
RBINS Staff Publications 2025
-
Seafloor morphology and habitats of tidal channels in the Venice Lagoon, Italy tidal channel habitats. Chapter 9.
-
Located in
Library
/
RBINS Staff Publications 2020
-
Limitations of Predicting Substrate Classes on a Sedimentary Complex but Morphologically Simple Seabed
-
Located in
Library
/
RBINS Staff Publications 2020
-
Authorship and date of five family-series nomina in Oligochaeta (Annelida): Lumbricidae, Naididae, Enchytraeidae, Tubificidae and Lumbriculidae
-
Located in
Library
/
RBINS Staff Publications 2021
-
A Paleocene occurrence of cornelian cherries Cornus subg. Cornus in the land-mammal site of Berru (Paris Basin, France)
-
Cornus subgenus Cornus, also called cornelian cherries, is a relatively ancient clade of dogwoods with a complex biogeographic history. Their fossil record attests to a distribution in North America during the Late Cretaceous and Paleocene, whereas the earliest fossil record in Europe is dated as early as the Eocene. Here, we describe a new occurrence of cornelian cherries based on permineralized endocarps from the late Paleocene (ca. 58 Ma) land-mammal locality of Berru, in Northwest France. The 48 studied specimens possess characteristic cornelian cherry endocarp morphology with locules associated with a dorsal germination valve, no central vascularization, and the presence of numerous secretory cavities in the endocarp wall. In addition, the presence of (three)-four locules and a large apical depression strongly suggest affinities with the early Eocene species Cornus multilocularis from the London Clay Formation. This new occurrence expands the stratigraphic range of the species by approximately four to six million years and is the first unequivocal evidence of cornelian cherries in Europe during the Paleocene. The biogeographical history of cornelian cherries remains complex to explore because of its ancient distribution in the Cretaceous and a geographically and stratigraphically patchy Cenozoic record.
Located in
Library
/
RBINS Staff Publications 2025
-
Bioerosional marks in the shells of two extinct sea turtle taxa from the Eocene of Belgium
-
Bioerosional marks are frequently recognized as indicators of the dynamic interactions between the organisms and their surrounding environments. In the fossil record, these structures are frequently manifest in the skeletal remains of vertebrates, being commonly associated to predation activity, scavenging, or post-mortem degradation processes. In the case of the turtles, their shells offer a distinctive substrate, exposed for the development of bioerosional processes throughout the organism life, unlike other vertebrate osseous structures. These bioerosions can indicate the type of habitat in which the turtles live, their behavioral patterns, and even their state of health. Sea turtles, as other marine vertebrates, have been extensively studied in the realms of the biology, evolution, and conservation. However, relatively scarce information is available regarding the pathologies and infectious diseases affecting their shells, especially when extinct taxa are analyzed. The aim of this study is to analyze the diverse types of bioerosional marks on the shells of two sea turtle individuals, attributable to taxa, from the Lutetian (middle Eocene) of Belgium. One of them corresponds to the shell of the holotype of Eochelone brabantica (IRSNB R 0001). Its carapace exhibits multiple erosive anomalies on several costal plates. The second specimen is a carapace of Puppigerus camperi (IRSNB R 0004). It displays different typologies of shell deviations, also of erosive character. The analyses of these specimens have been performed through both the detailed macroscopic examination and the study of the cross-sectional images provided by CT scanning in the case of Eochelone brabantica, and a 3D model obtained through a surface scanner for Puppigerus camperi. As a result, insights into the shell modifications of these two turtle individuals induced by various external agents have been provided, enhancing our understanding of the physical stressors affecting these organisms in ancient marine environments and the organisms responsible for these changes.
Located in
Library
/
RBINS Staff Publications 2025
-
First detailed study of the Belgian Eocene sea turtle ‘Oligochelone rupeliensis’
-
In 1909, the famous palaeontologist Louis Dollo announced, in a paper about the Belgian fossil vertebrates, a new Oligocene (Rupelian) genus and species of sea turtle, ‘Oligochelone rupeliensis’. He indicated that it was established for a specimen that preserved the complete carapace and several appendicular bones, being characterized as “a typical marine turtle”. No further information, but neither photographs or drawings, were provided by him. He planned to publish the study of this species in the future, but this did not happen. Only a schematic drawing of the plastron of that specimen, as well as a photograph of a tibia attributed to this taxon without justification, were presented, by another author, seventy years later. The first-hand study of the specimen considered by Dollo allows us to observe that it does not preserve any tibia, so that attribution cannot be supported. Therefore, except for that imprecise drawing of the plastron published more than four decades ago, no additional information was available so far. In fact, ‘Oligochelone rupeliensis’ was recognized as a nomen nudum. After a preliminary analysis of the specimen considered by Dollo, one of us (APG) and other collaborators recently indicated, without justification, that, although ‘Oligochelone rupeliensis’ could be closely related to the Eochelone representatives, it differs from all defined members of Cheloniidae. Therefore, we point out that a detailed anatomical study of this form, as well as its comparison with other species, would be necessary to propose, for the first time, a diagnosis, if its specific validity can be confirmed. Taking this into account, that partial skeleton has been analyzed in detail by us. To improve the comparative framework, both the type material and additional individuals from all Eocene and Oligocene cheloniid taxa recognized for the Belgian record have also been analyzed first-hand. The preliminary results are presented here.
Located in
Library
/
RBINS Staff Publications 2025