Skip to content. | Skip to navigation

Personal tools

You are here: Home
3214 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Oviposition of the snake Thelotornis kirtlandii in a parabiotic ant nest
Located in Library / RBINS Staff Publications 2017
Article Reference Fish otoliths from the Early and Middle Miocene of the Penedès (Catalunya, Spain)
Located in Library / RBINS Staff Publications 2017
Article Reference The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology
Here we review the fossil record of European mesonychids, which are known only through the genera Dissacus and Pachyaena from Thanetian and Ypresian localities (from MP6 to MP10 reference-levels). We describe two new species, Dissacus rougierae, sp. nov., and Dissacus raslanloubatieri, sp. nov., respectively from Palette (Ypresian, ≈MP7) and from La Borie (Ypresian, ≈MP8 + 9). We also describe new specimens of D. europaeus from Berru (Thanetian, ≈MP6). The evolution of the geographic distribution of the European mesonychids is characterized by three phases: (1) the mesonychid Dissacus appeared in Europe during the Thanetian (≈ 57–58 Mya), probably due to dispersal from North America; D. europaeus survived the PETM event (≈ 56 Mya) and possibly experienced a dwarfism; (2) the large mesonychid Pachyaena migrated into Europe shortly after the Paleocene-Eocene boundary (≈ 55 Mya), but it was restricted to northwestern Europe, while Dissacus is recorded at this time only in southwestern Europe (Palette); and (3) Pachyaena rapidly disappeared from European environments, while Dissacus subsequently dispersed into northwestern Europe (≈ 54–52 Mya). We performed phylogenetic analyses in order to identify the relationships of the new species among mesonychids. It seems that the mesonychids went through two radiative events: the first during the Paleocene, the second mostly during the early Eocene. The first one corresponds to the diversification of Dissacus, while the latter resulted in the appearance of the most specialized mesonychids, such as Pachyaena and Mesonyx.
Located in Library / RBINS Staff Publications 2017
Article Reference Unveiling the above-ground eukaryotic diversity supported by individual large old trees : the “Life on Trees” integrative protocol
Large tropical trees are rightly perceived as supporting a plethora of organisms. However, baseline data about the variety of taxa coexisting on single large tropical trees are lacking and prevent a full understanding of both the magnitude of biodiversity and the complexity of interactions among organisms in tropical rainforests. The two main aims of the research program “Life on Trees” (LOT) are (1) to establish baseline knowledge on the number of eukaryote species supported/hosted by the above-ground part of a single tropical tree and (2) to understand how these communities of organisms are assembled and distributed on or inside the tree. To achieve the first goal, we integrated a set of 36 methods for comprehensively sampling eukaryotes (plants, fungi, animals, protists) present on a tropical tree. The resulting LOT protocol was conceived and implemented during projects in the Andean Amazon region and is proposed here as a guideline for future projects of a similar nature. To address the second objective, we evaluated the microclimatic differences between tree zones and tested state-of-the-art terrestrial laser scanning (TLS) and positioning technologies incorporating satellite and fixed base station signals (dGNSS). A marked variation in temperature and relative humidity was detected along a 6-zones Johansson scheme, a tree structure subdivision system commonly used to study the stratification of epiphytic plants. Samples were collected from these six zones, including three along the trunk and three in the canopy. To better understand how different tree components (e.g., bark, leaves, fruits, flowers, dead wood) contribute to overall tree biodiversity, we categorized observations into communities based on Johansson zones and microhabitats. TLS was an essential aid in understanding the complex tree architecture. By contrast, the accuracy of positioning samples in the tree with dGNSS was low. Comprehensively sampling the biota of individual trees offers an alternative to assessing the biodiversity of fewer groups of organisms at the forest scale. Large old tropical trees provide a wealth of microhabitats that encompass a wide range of ecological conditions, thereby capturing a broad spectrum of biodiversity.
Located in Library / RBINS Staff Publications 2023
Article Reference Contribution of omnidirectional flight traps to assess the ant (Hymenoptera: Formicidae) diversity in an agroforestry system.
Located in Library / RBINS Staff Publications 2023
Article Reference Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition
Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
Located in Library / RBINS Staff Publications 2016
Article Reference Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species (vol 124, pg 561, 2016)
Located in Library / RBINS Staff Publications 2016
Article Reference Bostryx hennahi (Gray, 1828) the largest Chilean bulimulid (Mollusca: Pulmonata) rediscovered among Tillandsia communities in northern Chile
Located in Library / RBINS Staff Publications 2016
Article Reference The land Mollusca of Saint Kitts and Nevis (Lesser Antilles), with description of a new species
Located in Library / RBINS Staff Publications 2016
Article Reference Synopsis of Central Andean Orthalicoid land snails (Gastropoda, Stylommatophora), excluding Bulimulidae
Located in Library / RBINS Staff Publications 2016