Eosuchus lerichei is a gavialoid crocodylian from late Paleocene marine deposits of northwestern Europe, known from a skull and lower jaws, as well as postcrania. Its sister taxon relationship with the approximately contemporaneous species Eosuchus minor from the east coast of the USA has been explained through transoceanic dispersal, indicating a capability for salt excretion that is absent in extant gavialoids. However, there is currently no anatomical evidence to support marine adaptation in extinct gavialoids. Furthermore, the placement of Eosuchus within Gavialoidea is labile, with some analyses supporting affinities with the Late Cretaceous to early Paleogene “thoracosaurs.” Here we present novel data on the internal and external anatomy of the skull of E. lerichei that enables a revised diagnosis, with 6 autapormorphies identified for the genus and 10 features that enable differentiation of the species from Eosuchus minor. Our phylogenetic analyses recover Eosuchus as an early diverging gavialid gavialoid that is not part of the “thoracosaur” group. In addition to thickened semi-circular canal walls of the endosseous labyrinth and paratympanic sinus reduction, we identify potential osteological correlates for salt glands in the internal surface of the prefrontal and lacrimal bones of E. lerichei. These salt glands potentially provide anatomical evidence for the capability of transoceanic dispersal within Eosuchus, and we also identify them in the Late Cretaceous “thoracosaur” Portugalosuchus. Given that the earliest diverging and stratigraphically oldest gavialoids either have evidence for a nasal salt gland and/or have been recovered from marine deposits, this suggests the capacity for salt excretion might be ancestral for Gavialoidea. Mapping osteological and geological evidence for marine adaptation onto a phylogeny indicates that there was probably more than one independent loss/reduction in the capacity for salt excretion in gavialoids.
Located in
Library
/
RBINS Staff Publications 2024 OA
Here we report on anguimorph lizards from the earliest Eocene (MP 7) of the Dormaal locality in Belgium, from the time of the warmest global climate of the past 66 million years. Several clades can be identified in this site: Glyptosauridae, Varanidae, and Palaeovaranidae. Our study focuses on glyptosaurid specimens previously reported from the site, some of which had been provisionally described as a new species,?Placosaurus ragei, and some assigned to an unnamed Placosauriops-like ‘melanosaurine’. Our study presents data on new material, including an almost complete glyptosaurine frontal that has enabled us to assign much of the previously described material to a single genus and species. The specimens that had been assigned to both ?P ragei and the ‘melanosaurine’ share apomorphies (flat osteoderms and chevron-shaped osteoderms) with Gaultia, a glyptosaurid previously known from the earliest Eocene of Wyoming, USA. The Dormaal material represents the first record of this genus outside North America. In fact, the only potential evidence of the occurrence of ‘Melanosaurinae’ in Dormaal might be a single isolated vertebra described here. Here we also describe previously unfigured material of Saniwa and palaeovaranids from Dormaal. The presence of previously reported helodermatids cannot be supported in this Belgian site.
Located in
Library
/
RBINS Staff Publications 2024 OA
One of the largest isotopic datasets of the ancient Eastern Mediterranean region is evaluated, based on plants (n = 410), animals (n = 210) and humans (n = 16) from Tell Tweini (Syria). Diachronic analysis of plant and faunal specimens from four main periods of occupation: Early Bronze Age (2600–2000 BC), Middle Bronze Age (2000–1600 BC), Late Bronze Age (1600–1200 BC) and Iron Age (1200–333 BC) were investigated. Mean Δ13C results from seven plant species reveal emmer and free threshing wheat, olives, bitter vetch, rye grass and barley were adequately or well-watered during all periods of occupation. The grape Δ13C results suggest excellent growing conditions and particular care for its cultivation. The δ15N results indicate that especially the emmer and free threshing wheats received some manure inputs throughout the occupation sequence, while these were likely further increased during the Iron Age, encompassing also the olive groves and grape vineyards. Generally, domestic animals (cattle, sheep, goats) had C3 terrestrial diets and were kept together in similar environments. However, some animals consumed significant amounts of marine or C4 plants, possibly from disturbed habitats due to land use pressure or salt tolerant grasses and shrubs from wetland environments, which were recorded in the direct vicinity of the site. Middle Bronze Age humans consumed a C3 terrestrial diet with no measurable input from C4, freshwater or marine protein sources. Interestingly, the human diet was relatively low in animal protein and appears comparable to what is considered today a typical Mediterranean diet consisting of bread (wheat/barley), olives, grapes, pulses, dairy products and small amounts of meat. The combined isotopic analysis of plants, animals and humans from Tell Tweini represents unbroken links in the food chain which create unparalleled opportunities to enhance our current understanding of environmental conditions, climate change and lifeways in past populations from the Eastern Mediterranean.
Located in
Library
/
RBINS Staff Publications 2024