The use of soil and litter arthropods as biological indicators is a way to assess environmental changes, where ant species in particular may serve as important indicators of soil quality. This study aimed at relating the abundance of soil and litter ant species to soil parameters under different tree species, both native and exotic, and varieties of coffee and banana plantations. Variations were found in soil physicochemical parameters. A total of 30 species belonging to 14 genera, and four subfamilies, the Formicinae, Dorylinae, Myrmicinae, and Ponerinae were identified. Higher abundance was found in coffee plantations compared to banana plantations, exotic and native tree species. Species of Camponotus cinctellus and Odontomachus troglodytes occurred in all land uses which is a sign of tolerance to a wide range of soil properties. In addition, these species, together with Myrmicaria SP02, Phrynoponera gabonensis, Camponotus SP06, Myrmicaria opaciventris, Pheidole SP03, Tetramorium simillimum, Pheidole SP01, and Tetramorium laevithorax were not strongly correlated with soil physicochemical parameters. Species of Pheidole SP02 and Camponotus SP05 were restricted to specific soil physicochemical properties, while species of Tetramorium zonacaciae and Bothroponera talpa discriminated between native tree species, coffee plantations, soil organic carbon, sandy soil texture, and aggregate stability. We concluded that these ant species can differently indicate the soil quality depending on the land use. We recommended further studies in order to generalize these findings
Located in
Library
/
RBINS Staff Publications 2018
At the Blankaart Water Production Center, a reservoir containing 3 million m3 of raw surface water acts as a first biologic treatment step before further processing to drinking water. Over the past decade, severe algal blooms have occurred in the reservoir, hampering the water production. Therefore, strategies (e.g., the injection of algaecide) have been looked at to prevent these from happening or try to control them. In this context, the HYperspectral Pointable System for Terrestrial and Aquatic Radiometry (HYPSTAR), installed since early 2021, helps in monitoring the effectiveness of these strategies. Indeed, the HYPSTAR provides, at a very high temporal resolution, bio-optical parameters related to the water quality, i.e., Chlorophyll-a (Chla) concentrations and suspended particulate matter (SPM). The present paper shows how the raw in situ hyperspectral data (a total of 8116 spectra recorded between 2021-02-03 and 2022-08-03, of which 2988 spectra passed the quality check) are processed to find the water-leaving reflectance and how SPM and Chla are derived from it. Based on a limited number of validation data, we also discuss the potential of retrieving phycocyanin (an accessory pigment unique to freshwater cyanobacteria). The results show the benefits of the high temporal resolution of the HYPSTAR to provide near real-time water quality indicators. The study confirms that, in conjunction with a few water sampling data used for validation, the HYPSTAR can be used as a quick and cost-effective method to detect and monitor phytoplankton blooms.
Located in
Library
/
RBINS Staff Publications 2022