Recent genomic data have revealed multiple interactions between Neanderthals and modern humans, but there is currently little genetic evidence regarding Neanderthal behaviour, diet, or disease. Here we describe the shotgun-sequencing of ancient DNA from five specimens of Neanderthal calcified dental plaque (calculus) and the characterization of regional differences in Neanderthal ecology. At Spy cave, Belgium, Neanderthal diet was heavily meat based and included woolly rhinoceros and wild sheep (mouflon), characteristic of a steppe environment. In contrast, no meat was detected in the diet of Neanderthals from El Sidrón cave, Spain, and dietary components of mushrooms, pine nuts, and moss reflected forest gathering. Differences in diet were also linked to an overall shift in the oral bacterial community (microbiota) and suggested that meat consumption contributed to substantial variation within Neanderthal microbiota. Evidence for self-medication was detected in an El Sidrón Neanderthal with a dental abscess and a chronic gastrointestinal pathogen (Enterocytozoon bieneusi). Metagenomic data from this individual also contained a nearly complete genome of the archaeal commensal Methanobrevibacter oralis (10.2× depth of coverage)-the oldest draft microbial genome generated to date, at around 48,000 years old. DNA preserved within dental calculus represents a notable source of information about the behaviour and health of ancient hominin specimens, as well as a unique system that is useful for the study of long-term microbial evolution.
Located in
Library
/
RBINS Staff Publications 2017
Early Oligocene mammals from Europe are not well known. In Belgium this interval (reference level MP 21) is represented by four coeval localities, Boutersem, Boutersem-TGV, Hoogbutsel and Hoeleden. Included in a vertebrate assemblage of 20+ mammalian genera, one bat, Quinetia misonnei, has been previously described from Hoogbutsel, based on four lower dentitions. Twenty new specimens of Quinetia were recently recovered from Boutersem-TGV including six upper molars, a humerus, and thirteen lower dentitions. These new specimens confirm that Quinetia is a plecotine vespertilionid and consequently represents the earliest known occurrence of this tribe. Additionally, twenty five other dental specimens document the presence of a larger vespertilionid from Boutersem-TGV. These specimens are assigned to Myotis based on the primitive 3.1.3.3 dental formula, the presence of a single-rooted p3, myotodont lower molars, a relatively high crowned lower canine with well-developed mesial and distolingual shelves, M1 and M2 lacking both paraconules and metalophs, protofossa of M1 and M2 open posteriorly, and M3 being relatively short. The Boutersem-TGV Myotis specimens represent the earliest known record of this extant genus. Only some isolated potential myotine teeth from Le Batut (MP 19) in France are older but these teeth differ from Myotis in having upper molars with a paraloph and a protofossa closed posteriorly, both features more typical of the enigmatic “Leuconoe”. Myotodont species, such as “L”. salodorensis from Oensingen (MP 25) in Switzerland and “L”. lavocati from Le Garouillas (MP 25-28) in France, both share features of upper teeth that distinguish them from Myotis. Younger still are three Myotis species from Herrlingen 8-9 (MP 29) in Germany. Compared to the Boutersem-TGV Myotis, M. minor is much smaller with a relatively smaller, shorter and more delicate p4, M. intermedius is somewhat smaller in molar dimensions but with a substantially smaller and shorter p4, while M. major has larger m1-2, similar sized m3, smaller p4, more robust M1 and a more constricted P4 lingual shelf. The origin of Myotis appears to be at least as old as the earliest Oligocene.
Located in
Library
/
RBINS Staff Publications