-
Vegetation controls on channel network complexity in coastal wetlands
-
Channel networks are key to coastal wetland functioning and resilience under climate change. Vegetation affects sediment and hydrodynamics in many different ways, which calls for a coherent framework to explain how vegetation shapes channel network geometry and functioning. Here, we introduce an idealized model that shows how coastal wetland vegetation creates more complexly branching networks by increasing the ratio of channel incision versus topographic diffusion rates, thereby amplifying the channelization feedback that recursively incises finer-scale side-channels. This complexification trend qualitatively agrees with and provides an explanation for field data presented here as well as in earlier studies. Moreover, our model demonstrates that a stronger biogeomorphic feedback leads to higher and more densely vegetated marsh platforms and more extensive drainage networks. These findings may inspire future field research by raising the hypothesis that vegetation-induced self-organization enhances the storm surge buffering capacity of coastal wetlands and their resilience under sea-level rise.
Located in
Library
/
RBINS Staff Publications 2024
-
Verschillen tussen "museumgeologen" en "vrije geologen" - Différences entre les "géologues de musée" et les "géologues libres"
-
Located in
Library
/
RBINS Staff Publications 2022
-
Vertebral morphology and intracolumnar variation of the iconic African viperid snake Atheris (Serpentes, Viperidae)
-
We here provide a detailed description of the vertebral morphology of the African arboreal viperid snakes of the genus Atheris. Vertebrae of three different species of the genus, i.e., Atheris desaixi, Atheris hispida, and Atheris katangensis, were investigated via the aid of μCT (micro‐computed tomography) scanning. We describe several vertebrae from different regions of the vertebral column for all three species, starting from the atlas‐axis complex to the caudal tip, in order to demonstrate important differences regarding the intracolumnar variation. Comparison of these three species shows an overall similar general morphology of the trunk vertebrae among the Atheris species. We extensively compare Atheris with other known viperids. As the sole arboreal genus of Viperinae the prehensile nature of the tail of Atheris is reflected in its caudal vertebral morphology, which is characterized by a high number of caudal vertebrae but also robust and anteroventrally oriented pleurapophyses as a skeletal adaptation, linked with the myology of the tail, to an arboreal lifestyle. We anticipate that the extensive figuring of these viperid specimens will also aid identifications in paleontology.
Located in
Library
/
RBINS Staff Publications 2024
-
Vertebrate predation in the Late Devonian evidenced by bite traces and regurgitations: implications for an early tetrapod freshwater ecosystem
-
The terrestrialization process by vertebrates occurred during the Devonian period, with fully land-dwelling tetrapods recorded in the Carboniferous. Thus, the Late Devonian is an important period for deciphering the ecological pressures that applied during the water-to-land transition. Higher predation pressures in the underwater environment have been suggested as an influential biotic evolutionary factor in this key habitat shift. Direct evidence of ancient predation on Palaeozoic vertebrates is seen in the form of rare traces preserved on fossils, and these range from trauma observed on the skeleton (such as attack marks) to ingested food remains (bromalites). The late Famennian freshwater ecosystem of Strud (Belgium) consists of a rich assemblage of many coeval gnathostomes or jawed fishes (placoderms, ‘acanthodians’, actinopterygians, and various sarcopterygian groups including tetrapods). Here we analyse the record of direct evidence for predation in the Strud vertebrate fossil assemblage. We recognize 12 regurgitalites and 13 bite traces, including a rare case of a tooth embedded in its original prey body target. Fossils from regurgitalites were imaged using scanning electron microscopy and chemically analysed to test for their possible ingestion signature by comparison with other isolated skeletal remains from the same locality. From this evidence, tristichopterid tetrapodomorphs are inferred to be the highest consumers of the trophic network, targeting small placoderms, and porolepiforms, and probably congeners. We observe two possible prey patterns in regurgitalites, for sarcopterygians and actinopterygians, both of which are associated with acanthodians. In Strud, no trophic position can be deduced for tetrapods from direct fossil evidence of predation.
Located in
Library
/
RBINS Staff Publications 2022
-
Vertical and lateral distribution of Foraminifera and Ostracoda in the East Frisian Wadden Sea – developing a transfer func-tion for relative sea-level change.
-
Located in
Library
/
RBINS Staff Publications 2019
-
Vertical distribution of termites in a Panamanian rainforest
-
Located in
Library
/
RBINS Staff Publications
-
Vertical stratification of termites in a Panamanian rainforest
-
Located in
Library
/
RBINS Staff Publications
-
Vertical stratification of the termite assemblage in a neotropical rainforest
-
Located in
Library
/
RBINS Staff Publications
-
Vestibular sensitivity and locomotor behavior in early paleocene mammals
-
The end-Cretaceous extinction triggered the collapse of ecosystems and a drastic turnover of mammalian communities. During the Mesozoic, mammals were ecologically diverse, but less than extant species. Modern ecological richness was established by the Eocene, but questions remain about the ecology of the first wave of mammals radiating after the extinction. Postcranial fossils are often used to determine locomotor behavior; however, the semicircular canals of the inner ear also represent a reliable proxy. These canals detect the angular acceleration of the head during locomotion and transmit neuronal signals to the brain to allow stabilization of the eyes and head. Accordingly, vestibular sensitivity to rapid rotational head movements is higher in species with a larger canal radius of curvature and more orthogonal canals. We used high-resolution computed tomography scanning to obtain inner ear virtual endocasts for 30 specimens. We supplemented these with data from the literature to construct a database of 79 fossils from the Jurassic to the Eocene and 262 extant mammals. We compared data on canal morphology and another lifestyle proxy, the size of the petrosal lobules, which have a role in maintaining eyes’ movements and position. We find that Paleocene mammals exhibited a lower average and more constricted range of Agility Indices (AI), a new measure of canal radius size relative to body size, compared to Mesozoic, Eocene and extant taxa. In the early Paleocene, body mass and canal radius increased, but the former outpaced the latter leading to an AI decline. Similarly, their petrosal lobules were relatively smaller on average compared to other temporal groups, which suggests less ability for fast movements. Additionally, Paleocene mammals had similar AIs to extant scansorial and terrestrial quadrupeds. In contrast, the lack of canal orthogonality change from the Mesozoic to the Paleocene indicates no trend toward lower vestibular sensitivity regardless of changes in body size. This result may reflect functional differences between canal orthogonality and radius size. Our results support previous work on tarsal morphology and locomotor behavior ancestral state reconstruction suggesting that ground dwelling mammals were more common than arboreal taxa during the Paleocene. Ultimately, this pattern may indicate that the collapse of forested environments immediately after extinction led to the preferential survivorship of more terrestrially adapted mammals. Funding Sources Marie Sklodowska-Curie Actions: IF, European Research Council StG, National Science Foundation, Belgian Science Policy Office, DMNS No Walls Community Initiative.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
Vestiges d’un habitat du second âge du Fer à Verlaine « Plantation Buttiens » (prov. De Liège, Belgique).
-
Located in
Library
/
RBINS Staff Publications 2018