Skip to content. | Skip to navigation

Personal tools

You are here: Home
4466 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference The RESPONSE project: Reactive transport modelling of point source contamination in soils and groundwater
Point source contaminations origin from historic or current activities and occur in a variety of forms, extents and contaminants involved (e.g. landfills, industrial facilities, storage tanks, disposal of hazardous waste). Point source contaminations may pose risks to human health and the environment; it is therefore important to develop/improve current methodologies to assess the migration potential of contaminants in groundwater. Groundwater quality monitoring around contaminated sites is typically done by sampling piezometers. Modelling approaches can help to predict the spatial and temporal evolution of contamination plumes, design remediation strategies and assess health and environmental risks. Reactive transport models can potentially improve the prediction of contaminant routes, as they explicitly account for changing geochemical environments and chemical reactions during transport. In spite of recent advances, real-world applications remain scarce as these require large numbers of site-specific parameters. The aim of the RESPONSE project is to improve the use of reactive transport models that simulate the fate of inorganic and organic contaminants in soils and groundwater. More specifically, this project aims to (1) identify the minimum amount of site-specific parameters needed to predict reactive transport of inorganic pollutants (e.g. heavy metals) and (2) improve/simplify the modelling of transport of xenobiotic organic contaminants (XOC, e.g. hydrocarbons and pesticides). The transport of XOCs is particularly complex to model due to the effects and zonation of microbial activity at the plume fringe in polluted aquifers. The RESPONSE project focusses on typical groundwater pollution problems encountered around old municipal landfill sites and cemeteries. Municipal landfills can still release hazardous pollutants such as heavy metals and XOCs, even if they are covered by fresh ground layers after abandonment. Cemeteries can be considered a special case of landfill, releasing various compounds to the environment such as arsenic, mercury, bacteria, viruses and herbicides. Both location types are potential point sources for mixed groundwater pollution, typically including high concentrations of dissolved organic carbon (DOC), heavy metals and XOCs. The methodology in this project involves both experimental and modelling aspects. During the first screening stage, groundwater samples were collected from shallow piezometers at fifteen contaminated sites across Belgium (municipal landfills and cemeteries). Also, an improved reactive transport model is built based on HYDRUS1D-MODFLOW-PHREEQC to explicitly account for the dynamic behaviour of chemical conditions at the soil-ground water interface. Next, based on laboratory analyses, three case-study sites will be selected for further modelling and testing.
Located in Library / RBINS Staff Publications 2018
Article Reference The results of the use of innovative methods for monitoring and study of migrating anseriformes.
Located in Library / No RBINS Staff publications
Article Reference The Rhagionidae or Snipeflies of the Botanical Garden Jean Massart (Brussels-Capital Region, Belgium) with notes on the identity of the rare European species Archicera avarorum Szilády, 1934 and Ptiolina obscura (Fallén, 1814) (Diptera: Rhagionidae)
Located in Library / RBINS Staff Publications 2020
Article Reference The richness and diversity of Lepidoptera species in different habitats of the National Park Theniet El Had (Algeria)
Located in Library / RBINS collections by external author(s)
Article Reference The rise of feathered dinosaurs: Kulindadromeus zabaikalicus, the oldest dinosaur with ‘feather-like’ structures
Located in Library / RBINS Staff Publications 2019
Article Reference The role of animals in the funerary rites at Dayr al-Barshā
Located in Library / RBINS Staff Publications
Article Reference The Role of Belgian Airborne Sniffer Measurements in the MARPOL Annex VI Enforcement Chain
Located in Library / RBINS Staff Publications 2023
Article Reference The role of dispersal and vicariance in Pleistocene history of an East African mountain rodent, Praomys delectorum
Located in Library / RBINS Staff Publications
Article Reference The role of human interference on the channel shifting of the Karkheh River in the Lower Khuzestan plain (Mesopotamia, SW Iran)
This study is concerned with the Late Holocene floodplain history of the Karkheh River in Lower Khuzestan, and in particular with the role of human action upon its channel shifts. The research was conducted in a multidisciplinary way, in which resources and approaches from different research fields were combined: (1) geomorphological mapping based on the interpretation of Landsat and CORONA satellite imagery, (2) analyses of geological sequences, including the identification of sedimentary facies and radiocarbon dating of organic material, (3) an archaeological field survey of ancient settlements, and (4) consultation of historical documents, mainly Arabic texts from the 9th–14th century and European travel literature from the 16th-early 20th century. Three main channel belts of the Karkheh were identified (labelled Kh1, Kh2 and Kh3), corresponding to successive stages in the evolution of the floodplain. Two river shifts are documented in the datasets, both taking place within the last 2000 years. The first avulsion regards a shift from channel belt Kh1, once a tributary of the Karun, to the straight river bed of Kh2, taking place at least after 1240–1310 cal BP/710–640 AD. The second avulsion, from Kh2 to Kh3, is clearly documented in historical sources and happened in a single night event in the year 1837/113 cal BP. Reactivation of the Kh2 river bed and its irrigation canals can be attributed to the recent construction of an artificial canal bypassing the second avulsion point. Both river shifts were strongly influenced by human interference, whereby an artificial irrigation canal took over the entire river flow from the main channel belt. Most likely, a combination of human-induced factors, such as weakening of the river levees, high sedimentation rates and disadvantageous channel gradients, led to a situation prone to avulsion.
Located in Library / RBINS Staff Publications
Article Reference The role of long-term human impact on avulsion and fan development
This study aims to understand (mainly qualitatively) the long-term role of human impact on avulsion processes and the development of fluvial (mega-) fans in semi-arid environments. In this paper we refer to human impact as the direct influences of actions on the river's hydraulics (i.e. flow regulation, flow diversion and channel engineering). In five case-studies drawn from the Khuzestan plains in southwest Iran we have analysed the setup and triggering conditions of specific avulsions that occurred in the past (timescale of millennia) and identified the role of human interference in their causation. Our analysis is based on the integration of historical, archaeological, geomorphological and geological data. Through this study we demonstrate that avulsions in the Khuzestan plains are the result of long-term and complex interplay between multiple human-induced and natural causes. In similar ways human-induced actions may play important roles during different phases of avulsion development. The ‘success‘ of an avulsion in the post-triggering phase may be defined by human-induced setup causes as well as morphodynamic processes. We suggest that present-day flood events may be partly inherited from long-term human alterations of the natural processes. These finding could have implications for any fluvial system (e.g. distributive fluvial systems, deltas) where avulsion plays a major role in their development and research tends to emphasize on natural mechanisms.
Located in Library / RBINS Staff Publications