The Meuse and its tributary valleys contain numerous Late Pleistocene cave sites that have yielded one of the largest collections of Neanderthal and Mousterian lithic industries in Europe. Today, it is an important north–south migratory corridor for flora and fauna, generating rich biotopes. The Quaternary collections of the Royal Belgian Institute of Natural Sciences (Brussels, Belgium) are here used to complement our knowledge of the successive herpetofaunal assemblages in Belgium during the last interglacial-glacial cycle (marine isotope stages 5 to 1). Herpetofauna from 18 caves are described for the first time. In total, 17 taxa (10 amphibians and seven reptiles) are identified, three of which correspond to their first fossil record for Belgium (Alytes obstetricans, Pelobates fuscus, and Hyla arborea). The thermophilic snake Zamenis longissimus is documented for the first time in the Holocene (Atlantic/Subboreal period) of Belgium. After marine isotope stage (MIS) 5, the Belgian herpetofauna was still reasonably diverse during MIS 3, but it seems to be represented only by the common frog Rana temporaria and a viper during MIS 2. Paleoenvironmental and paleoclimatic reconstructions are proposed for a selection of the chronologically best-constrained sites, using the quantified ecology method. More specifically, the late Magdalenian of the Trou de Chaleux is reconstructed as particularly cold and dry. The seasonal contrast reaches its maximum during this period. The quantitative parameters calculated in this study provide a new paleoecological context for understanding the conditions with which the successive human species had to cope in Northwestern Europe during the last interglacial-glacial cycle.
Located in
Library
/
RBINS Staff Publications 2022 OA
Tsunami deposits around the North Sea basin are needed to assess the long-term hazard of tsunamis. Here, we present sedimentary evidence of the youngest tsunami on the Shetland Islands from Loch Flugarth, a coastal lake on northern Mainland. Three gravity cores show organic-rich background sedimentation with many sub-centimetre-scale sand layers, reflecting recurring storm overwash and a sediment source limited to the active beach and uppermost subtidal zone. A basal 13-cm-thick sand layer, dated to 426–787 cal. a CE based on 14C, 137Cs and Bayesian age–depth modelling, was found in all cores. High-resolution grain-size analysis identified four normally graded or massive sublayers with inversely graded traction carpets at the base of two sublayers. A thin organic-rich ‘mud’ drape and a ‘mud’ cap cover the two uppermost sublayers, which also contain small rip-up clasts. Grain-size distributions show a difference between the basal sand layer and the coarser and better sorted storm layers above. Multivariate statistical analysis of X-ray fluorescence core scanning data also distinguishes both sand units: Zr, Fe and Ti dominate the thick basal sand, while the thin storm layers are high in K and Si. Enriched Zr and Ti in the basal sand layer, in combination with increased magnetic susceptibility, may be related to higher heavy mineral content reflecting an additional marine sediment source below the storm-wave base that is activated by a tsunami. Based on reinterpretation of chronological data from two different published sites and the chronostratigraphy of the present study, the tsunami seems to date to c. 1400 cal. a BP. Although the source of the tsunami remains unclear, the lack of evidence for this event outside of the Shetland Islands suggests that it had a local source and was smaller than the older Storegga tsunami (8.15 cal. ka BP), which affected most of the North Sea basin.
Located in
Library
/
RBINS Staff Publications 2024