Excavations during 2015 at a channel deposit in the early Eocene Cambay Shale Formation of the Tadkeshwar open cast lignite mine near Vastan in Gujarat Province, western India, have yielded terrestrial mammals, lizards, snakes, frogs, and birds as well as a few marine/brackish-water animals, predominantly teeth of the shark Physogaleus and Myliobatis rays. Among these is a jaw of an unusual teleost. This lower jaw of a gymnodont has fused dentaries, lacks a beak, and shows a remarkable series of teeth that are unique among all known fossil and living Tetraodontiformes. The teeth are molariform with raised “spokes” radiating inward from the emarginated peripheral edge of the crown. Tooth development is intraosseous, with new teeth developing in spongy bone before they erupt and attach to the dentary by pedicels. Although many of the 110 tooth loci in the fossil specimen have lost their teeth, in life the teeth would have grown to fit tightly together to form a broad and continuous crushing surface. The estimated age of the early Eocene Cambay Shale vertebrate fauna is ca. 54.5 Ma, making the jaw the second oldest confirmed gymnodont fossil. Comparisons to extant taxa of gymnodonts with fused dentaries (e.g., Diodon, Chilomycterus, and Mola) offer few clues about evolutionary relationships of the new fossil. Although the fused dentaries suggest affinities to diodontids and molids among living tetraodontiforms, it remains challenging to interpret phylogenetic relationships of the new Indian gymnodont because no living or fossil tetraodontoid has similar tooth morphology. We describe it as a new genus and species, and place it in its own new family of Gymnodontes. Grant Information: National Geographic Society, Leakey Foundation, Belgian Science Policy Office, Tontogany Creek Fund, National Science Foundation, Wadia Institute of Himalayan Geology.
Located in
Library
/
RBINS Staff Publications 2017
Background: Parasite switches to new host species are of fundamental scientific interest and may be considered an important speciation mechanism. For numerous monogenean fish parasites, infecting different hosts is associated with morphological adaptations, in particular of the attachment organ (haptor). However, haptoral morphology in Cichlidogyrus spp. (Monogenea, Dactylogyridea), parasites of African cichlids, has been mainly linked to phylogenetic rather than to host constraints. Here we determined the position of Cichlidogyrus amieti, a parasite of species of Aphyosemion (Cyprinodontiformes, Nothobranchiidae) in the phylogeny of its congeners in order to infer its origin and assess the morphological changes associated with host-switching events. Methods: The DNA of specimens of C. amieti isolated from Aphyosemion cameronense in Cameroon was sequenced and analyzed together with that of Cichlidogyrus spp. from cichlid hosts. In order to highlight the influence of the lateral transfer of C. amieti on the haptoral sclerotised parts we performed a Principal Component Analysis (PCA) to compare the attachment organ structure of C. amieti to that of congeners infecting cichlids. Results: Cichlidogyrus amieti was found to be nested within a strongly supported clade of species described from Hemichromis spp. (i.e. C. longicirrus and C. dracolemma). This clade is located at a derived position of the tree, suggesting that C. amieti transferred from cichlids to Cyprinodontiformes and not inversely. The morphological similarity between features of their copulatory organs suggested that C. amieti shares a recent ancestor with C. dracolemma. It also indicates that in this case, these organs do not seem subjected to strong divergent selection pressure. On the other hand, there are substantial differences in haptoral morphology between C. amieti and all of its closely related congeners described from Hemichromis spp.. Conclusions: Our study provides new evidence supporting the hypothesis of the adaptive nature of haptor morphology. It demonstrates this adaptive component for the first time within Cichlidogyrus, the attachment organs of which were usually considered to be mainly phylogenetically constrained.
Located in
Library
/
RBINS Staff Publications