Skip to content. | Skip to navigation

Personal tools

You are here: Home
4604 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Host lifestyle and parasite interspecific facilitation mediate co- infection in a species-poor host–parasite system
Located in Library / RBINS Staff Publications 2024
Article Reference Host Shifts from Lamiales to Brassicaceae in the Sawfly Genus Athalia
Located in Library / RBINS Staff Publications
Article Reference How ancient are ancient asexuals?
Located in Library / RBINS Staff Publications
Article Reference How common is trophobiosis with hoppers (Hemiptera: Auchenorrhyncha) inside ant nests (Hymenoptera: Formicidae)? Novel interactions from New Guinea and a worldwide overview
Trophobiotic interactions between ants and honeydew-providing hemipterans are widespread and are one of the key mechanisms that maintain ant super-abundance in ecosystems. Many of them occur inside ant nests. However, these cryptic associations are poorly understood, particularly those with hoppers (suborder Auchenorrhyncha). Here, we study tree-dwelling ant and Hemi­ptera communities in nests along the Mt. Wilhelm elevational gradient in Papua New Guinea and report a new case of this symbiosis between Pseudolasius Emery, 1887 ants and planthoppers. Furthermore, we provide a worldwide review of other ant-hopper interactions inside ant-built structures and compare their nature (obligate versus facultative) and distribution within the suborder Auchenorrhyncha. The novel interactions were observed in nests located at the tree trunk bases or along the whole trunks. Only immature planthopper stages were found inside nests, so full species identifications were not possible. However, nymph morphology and molecular data (18S and COI genes) indicated four related species of the family Flatidae (infraorder Fulgoromorpha) associated with Pseudolasius. Ant-planthopper occurrences were relatively rare (6% of all trophobiotic interactions) and peaked at mid-elevation (900 m above sea level). Pseudolasius was the only genus associated with planthoppers in the communities, with most cases monopolised by a single species, P. breviceps Emery, 1887. In contrast, all other ant genera tended various scale insects (Sternorrhyncha: Coccoidea). This apparent partner-specificity is rare: Worldwide, there are only about ten reported cases of obligate symbiosis in ant nests, distributed in five of the thirty-three Auchenorrhyncha families. Those trophobioses are randomly dispersed across the Auchenorrhyncha phylogeny, and thus likely originated multiple times independently. Further research on both adult and nymph hopper life history is needed to answer how these symbioses, notably rare in hoppers compared with other hemi­pterans, are maintained.
Located in Library / RBINS Staff Publications 2018
Article Reference How different are the Kebara 2 ribs to modern humans?
This study analyses rib geometric parameters of individual ribs of 14 modern human subjects (7 males and 7 females) in comparison to the reconstructed ribs of the Kebara 2 skeleton which was taken from the reconstruction of a Neandertal thorax by Sawyer & Maley (2005). Three-dimensional (3D) models were segmented from CT scans and each rib vertex cloud was placed into a local coordinate system defined from the rib principal axes. Rib clouds were then analysed using best fitting ellipses of the external contours of the cross-section areas. The centroid of each ellipse was then used to measure the centroidal pathway between each slice (rib midline). Curvature of the ribs was measured from the mid-line of the ribs as the sum of angles between successive centroids in adjacent cross sections. Distinct common patterns were noted in all rib geometric parameters for modern humans. The Kebara 2 reconstructed ribs also followed the same patterns. This study demonstrated that there are differences between the sexes in rib geometrical parameters, with females showing smaller rib width, chord length and arc length, but greater curvature (rib torsion, rib axial curvature, rib anterior-posterior bending) than males. The Kebara 2 reconstructed ribs were within the modern human range for the majority of geometrical parameters.
Located in Library / RBINS Staff Publications 2017
Article Reference How does bromeliad distribution structure the arboreal ant assemblage (Hymenoptera: Formicidae) on a single tree in a Brazilian Atlantic forest agroecosystem?
Located in Library / RBINS Staff Publications
Article Reference How does landscape vegetation configuration regulate local channel initiation in a rapidly expanding micro-tidal system?
Tidal channels are essential morphological structures that mediate hydrological connectivity and maintain coastal resilience. Previous studies on vegetation-induced channel development primarily focused on the stages of initial establishment or later elaboration, characterized by slow and localized changes. However, the impact of rapid shifts in landscape vegetation on the initiation of tidal channels, such as main or tributary channels, remains poorly understood, particularly in micro-tidal system. In this study, we investigated this relationship through satellite imagery analysis and biogeomorphic modeling of a rapidly expanding micro-tidal marsh in the Yellow River Delta, China, which has experienced an invasion by Spartina alterniflora over the past decade. The satellite imagery demonstrated that Spartina alterniflora invasion has increased drainage density and reduced overland flow path length. Our modeling results showed that local flow acceleration between vegetation patches was insufficient to rapidly initiate channels under micro-tidal conditions. As the patchy marsh coalesced and expanded into a contiguously vegetated marsh, it altered landscape-scale flow patterns, diverting from homogenous platform flow to concentrated channel flow. This shift prominently promoted the initiation of tributary channels in the landward marsh zone. The simulated scenarios of vegetation removal highlighted a marked increase in flow divergence from adjacent platforms due to changes in landscape-scale vegetation configuration. This alteration in flow pattern amplified local hydrodynamics, consequently intensifying local channel incision. Our findings emphasize that the channel initiation is significantly influenced by landscape-scale vegetation configuration under micro-tidal conditions, beyond the localized interactions between plants and flow.
Located in Library / RBINS Staff Publications 2025
Article Reference How morphology and erodibility influence the origin and pattern of late Holocene tidal channels: case studies from the Belgian coastal lowlands
Located in Library / RBINS Staff Publications
Article Reference How territoriality and host-tree taxa determine the structure of ant mosaics.
Located in Library / RBINS Staff Publications
Article Reference How the larval traits of six flatfish species impact connectivity
Located in Library / RBINS Staff Publications 2019