Skip to content. | Skip to navigation

Personal tools

You are here: Home
4358 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Geophysical well log correlations in the Quaternary deposits of the Campine area, northern Belgium
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Areas Prone to Land Subsidence and their Evolutions in Belgium During the Last 30 Years
PSInSAR analyses across Belgium using ERS 1-2, ENVISAT, TerraSAR-X and Sentinel 1 allowed to follow several ground movements areas during the last three decades. Several areas of regional importance are affected by land subsidence processes that have been observed during this period (i.e. the alluvial plain of the Schelde estuary in Antwerpen, a large area in the West Flanders province and one around Merchtem area). Other land subsidence areas associated to old coal mining both in Flanders (Campine basin) and Wallonia (Hainaut and Liège province) are affected by progressive uplifting conditions linked to the mining aquifer piezometric rebound. It is extremely important to follow the spatio-temporal behavior of these phenomena to forecast their influences and their effects on the urban developments.
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Land Subsidence Observed in the Merchtem Area (Flanders) – 30 Years of SAR Data Associated to Groundwater Withdrawal?
A land subsidence affecting several towns at the joining limits of the Belgian Provinces of East Flanders, Antwerp and Flemish Brabant is followed during the last three decades. ERS 1–2, ENVISAT, TerraSAR-X and Sentinel-1A satellites SAR scenes were processed from 1992 till October 2020 to map the land subsidence evolution. The subsidence corresponds to a surface area of 220 km 2 during the ERS 1/2 time interval distributed over three distinct subsidence bowls. During the ENVISAT and TerraSAR-X time interval, only one residual subsidence bowl was mapped affecting a surface area of about 70 km 2 . Several towns (Londerzeel and Steenhuffel) remained in the center of the subsidence bowl. The annual average negative velocity values range between −5.99 and −0.5 mm/year. During the Sentinel-1A period, the subsidence bowl has lost half of its surface reaching 36 km 2 . The LOS velocity values have also decreased during the period 2016–2020.
Located in Library / RBINS Staff Publications 2021
Article Reference A pathological ulna of Amurosaurus riabinini from the Upper Cretaceous of Far Eastern Russia
Located in Library / RBINS Staff Publications 2022
Article Reference Uncertainties associated with in situ high-frequency long-term observations of suspended particulate matter concentration using optical and accoustic sensors
Located in Library / RBINS Staff Publications 2019
Article Reference Seasonal dynamics of organic matter composition and its effects on suspended sediment flocculation in river water
Located in Library / RBINS Staff Publications 2019
Article Reference Effects of aquatic biofilms on flocculation processes of cohesive sediments: A modeling approach
Located in Library / RBINS Staff Publications 2019
Article Reference Mud dynamics in the port of Zeebrugge
Located in Library / RBINS Staff Publications 2019
Article Reference Behavior and body size modulate the defense of toxin‑containing sawfly larvae against ants
Located in Library / RBINS Staff Publications 2021
Article Reference Spring Water Geochemistry: A Geothermal Exploration Tool in the Rhenohercynian Fold-and-Thrust Belt in Belgium
Spring water geochemistry is applied here to evaluate the geothermal potential in Rhenohercynian fold and thrust belt around the deepest borehole in Belgium (Havelange borehole:5648 m MD). Fifty springs and (few) wells around Havelange borehole were chosen according to a multicriteria approach including the hydrothermal source of “Chaudfontaine” (T =~ 36 °C) taken as a reference for the area. The waters sampled, except Chaudfontaine present an in-situ T range of 3.66–14.04 °C (mean 9.83 °C) and a TDS (dry residue) salinity range of 46–498 mg/L. The processing methods applied to the results are: hierarchical clustering, Piper and Stiff diagrams, TIS, heat map, boxplots, and geothermometry. Seven clusters are found and allow us to define three main water types. The first type, locally called “pouhon”, is rich in Fe and Mn. The second type contains an interesting concentration of the geothermal indicators: Li, Sr, Rb. Chaudfontaine and Moressée (=~5 km East from the borehole) belong to this group. This last locality is identified as a geothermal target for further investigations. The third group represents superficial waters with frequently high NO3 concentration. The application of conventional geothermometers in this context indicates very different reservoir temperatures. The field of applications of these geothermometers need to be review in these geological conditions.
Located in Library / RBINS Staff Publications 2021 OA