The late Paleolithic site of Makhadma 4, located along the Nile River in Upper Egypt, yielded an important ichthyofauna characterized by a very high proportion of tilapia (Oreochromis niloticus). We used isotopic analysis (d18O) of well-preserved otoliths (“ear stones”) of tilapia to reconstruct the former hydrological conditions, as well as the fishing strategies of the site's inhabitants. Otoliths from two modern fish captured in the Nile River near Esna were also examined to test how accurately tilapia otoliths reflect their ambient environment. All otoliths were sequentially micromilled to recover high resolution isotopic profiles along the main growth axis. Comparison of the modern otolith profiles with environmental data shows that tilapia d18O values record seasonal variations of the modern Nile hydroclimate but that their values are offset. The archaeological otoliths record very large intraindividual cyclical variations in d18O values, with relatively consistent amplitude, as well as very high seasonal maximum values (up to þ8.3‰), compared with the modern otoliths. The hydrological regime of the water body in which the archaeological fish lived was characterized by a reduced Nile water inflow that could not negate the effect of local evaporation during spring. The reconstructed hydrological conditions are in accordance with a new model of Nilotic behavior that assumes the creation of lakes by damming of the Nile as a result of a high eolian activity during hyper-arid periods of the Late Pleistocene. Although large seasonal evaporation may have resulted in a severe seasonal reduction in the lake's volume and extent, the lake was, nevertheless, maintained for several years. Cyclic variations in otolith d18O values permit reconstruction of the period of the hydrological cycle during which the fish were captured. Fishing of young individuals occurred mostly after the maximum input of inflow water from the Nile, when evaporitic conditions were at their lowest, i.e. during fall.
Located in
Library
/
RBINS Staff Publications 2017
Suspended particulate matter (SPM) is abundant and essential in marine and coastal waters, and comprises a wide variety of biomineral particles, which are practically grouped into organic biomass and inorganic sediments. Such biomass and sediments interact with each other and build large biomineral aggregates via flocculation, therefore controlling the fate and transport of SPM in marine and coastal waters. Despite its importance, flocculation mediated by biomass-sediment interactions is not fully understood. Thus, the aim of this research was to explain biologically mediated flocculation and SPM dynamics in different locations and seasons in marine and coastal waters. Field measurement campaigns followed by physical and biochemical analyses had been carried out from 2004 to 2011 in the Belgian coastal area to investigate bio-mediated flocculation and SPM dynamics. Although SPM had the same mineralogical composition, it encountered different fates in the turbidity maximum zone (TMZ) and in the offshore zone (OSZ), regarding bio-mediated flocculation. SPM in the TMZ built sediment-enriched, dense, and settleable biomineral aggregates, whereas SPM in the OSZ composed biomass-enriched, less dense, and less settleable marine snow. Biological proliferation, such as an algal bloom, was also found to facilitate SPM in building biomass-enriched marine snow, even in the TMZ. In short, bio-mediated flocculation and SPM dynamics varied spatially and seasonally, owing to biomass-sediment interactions and bio-mediated flocculation.
Located in
Library
/
RBINS Staff Publications 2017
Photo-initiators are widely used to cure ink on packaging materials used in food applications such as plastic films or cartonboards. In migration studies, food simulants are very often used to simulate food, like Tenax®, which is the simulant for dry foodstuffs. In this paper a fast and reliable confirmation method for the determination of the following photoinitiators in Tenax® is described: benzophenone (BP), 4,4´-bis(diethylamino)benzophenone (DEAB), 2-chloro-9H-thioxanthen-9-one (CTX), 1-chloro-4-propoxy-9H-thioxanthen-9-one (CPTX), 2,4-diethyl-9H-thioxanthen-9-one(DETX), 2,2-dimethoxy-2-phenyl acetophenone (DMPA), 4-(dimethylamino)benzophenone (DMBP), 2-ethylanthraquinone(EA), ethyl-4-dimethylaminobenzoate (EDMAB), 1-hydroxylcyclohexyl phenyl ketone (HCPK), 2-hydroxy-4´- (2-hydroxyethoxy)-2-methylpropiophenone (HMMP), 2-isopropyl-9H-thioxanthen-9-one (ITX), 4-methylbenzophenone(MBP), Michler’s ketone (MK), and 4-phenylbenzophenone (PBZ). After the migration study was completed, the simulant Tenax® was extracted using acetonitrile, followed by analysis on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Quantification was carried out using benzophenone-d10 (BP-d10) as internal standard. The presented method is validated in terms of matrix effect, specificity, linearity, recovery, precision and sensitivity, showing the method can detect all photo-initiators at very low concentrations (LOD < 0.125 μg g–1 for all substances). Finally, the procedure was applied to real samples, proving the capabilities of the presented method.
Located in
Library
/
No RBINS Staff publications