-
Brawn before brains in placental mammals after the end-Cretaceous extinction
-
Mammals are the most encephalized vertebrates, with the largest brains relative to body size. Placental mammals have particularly enlarged brains, with expanded neocortices for sensory integration, the origins of which are unclear. We used computed tomography scans of newly discovered Paleocene fossils to show that contrary to the convention that mammal brains have steadily enlarged over time, early placentals initially decreased their relative brain sizes because body mass increased at a faster rate. Later in the Eocene, multiple crown lineages independently acquired highly encephalized brains through marked growth in sensory regions. We argue that the placental radiation initially emphasized increases in body size as extinction survivors filled vacant niches. Brains eventually became larger as ecosystems saturated and competition intensified.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
New data on Barbatodon oardaensis Codrea, Solomon, Venczel & Smith, 2014, the smallest Late Cretaceous multituberculate mammal from Europe
-
Surprisingly, after the Early Cretaceous taxonomic diversity recorded in Europe, which probably is largely an artifact of inadequate taxonomy and inflation of taxa, multituberculate mammals became extremely scarce in the Late Cretaceous in this continent, being reported exclusively from the uppermost Cretaceous continental deposits of the so-called “Haţeg Island” in Transylvania, Romania. Such mammals have been documented from the Haţeg and Rusca Montană sedimentary basins, as well as from the southwestern area of the Transylvanian Basin. All these records belong to the endemic family Kogaionidae. The present paper reports additional data related to the smallest Cretaceous kogaionid, Barbatodon oardaensis Codrea, Solomon, Venczel & Smith, 2014 based on a series of new isolated teeth recovered mainly from the type locality, Oarda de Jos (Oarda A). Furthermore, the fossil locali-ties Oarda B and Vălioara are other new occurrences for the species. Based on this new material, the intraspecific variability of B. oardaensis is confirmed and its presence is attested in the three basins. Details related to the diversity of the “Haţeg Island” kogaionids are also provided.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
A new gecko from the earliest Eocene of Dormaal, Belgium: a thermophilic element of the ‘greenhouse world’
-
We here describe a new gekkotan lizard from the earliest Eocene (MP 7) of the Dormaal locality in Belgium, from the time of the warmest global climates of the past 66 million years (Myr). This new taxon, with an age of 56 Myr, together with indeterminate gekkotan material reported from Silveirinha (Portugal, MP 7) represent the oldest Cenozoic gekkotans known from Europe. Today gekkotan lizards are distributed worldwide in mainly warm temperate to tropical areas and the new gecko from Dormaal represents a thermophilic faunal element. Given the Palaeocene–Eocene thermal maximum at that time, the distribution of this group in such northern latitudes (above 50° North – the latitude of southern England) is not surprising. Although this new gekkotan is represented only by a frontal (further, dentaries and a mandibular fragment are described here as Gekkota indet. 1 and 2—at least two gekkotan species occurred in Dormaal), it provides a new record for squamate diversity from the earliest Eocene ‘greenhouse world’. Together with the Baltic amber gekkotan Yantarogekko balticus, they document the northern distribution of gekkotans in Europe during the Eocene. The increase in temperature during the early Eocene led to a rise in sea level, and many areas of Eurasia were submerged. Thus, the importance of this period is magnified by understanding future global climate change.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
Revision of the oldest varanid, Saniwa orsmaelensis Dollo, 1923, from the earliest Eocene of northwest Europe
-
Saniwa is an extinct genus of varanid squamate from the Eocene of North America and Europe. Up to now, only one poorly known species, Saniwa orsmaelensis Dollo, 1923, has been reported from Europe. Diagnostic material was limited to vertebrae with only preliminary description and no figure provided, except of one dorsal vertebra that was designated as the lectotype. New specimens from the earliest Eocene of Dormaal, Belgium and Le Quesnoy, France, including recently recovered skull ma-terial, are described and illustrated here. These fossils representing the oldest varanid squamate allow further comparisons with the type species, Saniwa ensidens Leidy, 1870, from the early and middle Eocene of North America and to propose a new diagnosis for S. orsmaelensis. Its arrival in Europe is probably linked to rapid environmental changes around the Paleocene Eocene Thermal Maximum (PETM). The occurrence of S. orsmaelensis is restricted to the early Eocene of northwest Europe and paleogeographic considerations regarding the distribution of the genus Saniwa Leidy, 1870 suggest an Asian origin, but an African origin cannot be completely excluded.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
New evidence of the emergence of the East Asian monsoon in the early Palaeogene
-
Previous palaeoenvironmental reconstructions have implied that East Asia was dominated by a zonal climate pattern during the Eocene, with an almost latitudinal arid/semiarid band at ~ 30° N. However, this long-standing model has recently been challenged by growing body of multidisciplinary evidence. Some studies indicated that central China was characterized by climatic fluctuations between humid and drier conditions during the Early Eocene, akin to the present East Asian monsoon (EAM) regime. Using palynological assemblages in the Tantou Basin, central China, we quantitatively reconstructed climate changes from the Late Palaeocene to Early Eocene to better understand climate change in central China. Palynological assemblages revealed that the coniferous and broad-leaved mixed forest in this area received no less than 800 mm of annual precipitation and experienced a climate change from warm and wet to relatively cool and dry. According to palaeoclimate curves, a sudden climate change occurred in the Early Eocene, with the mean annual temperature and precipitation decreasing by 5.1 °C and 214.8 mm, respectively, and the climate became very similar to the present climate, which is controlled by the monsoon. Therefore, this significant climate change during the Early Eocene may signal the emergence of the EAM in East Asia.
Located in
Library
/
RBINS Staff Publications 2022 OA
-
A new species of Platylomia Stål, 1870 (Hemiptera: Cicadidae) from Vietnam, with a key to species
-
Located in
Library
/
RBINS Staff Publications 2022 OA
-
Three new species of Muricidae (Ocenebrinae, Pagodulinae) from the Gulf of California, Mexico and update of the living muricids from the area
-
Located in
Library
/
RBINS Staff Publications 2020
-
Description of a remarkable and huge new species of Zacatrophon (Muricidae: Ocenebrinae) from the Gulf of California
-
Located in
Library
/
RBINS Staff Publications 2020
-
The rise of sea-fish consumption in inland Flanders, Belgium
-
Located in
Library
/
RBINS Staff Publications 2016
-
Archeologische opgraving van een midden- mesolithische tot midden-neolithische vindplaats te ‘Bazel-sluis 5’ (gemeente Kruibeke, provincie Oost-Vlaanderen)
-
Located in
Library
/
RBINS Staff Publications 2016