Skip to content. | Skip to navigation

Personal tools

You are here: Home
1068 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Biofluorescence of the Mottled shovel-nosed frog, Hemisus marmoratus: first report for Hemisotidae.
Located in Library / RBINS Staff Publications 2023
Techreport Reference BioGeochemical PARTicle interactons and feedback loops on the Belgian Continental Shelf, 3rd Annual Report.
Located in Library / RBINS Staff Publications 2024 OA
Article Reference Biomineral Flocculation of Kaolinite and Microalgae: Laboratory Experiments and Stochastic Modeling.
Located in Library / RBINS Staff Publications 2022 OA
Inproceedings Reference Bioturbation des alluvions modernes de la grotte de Han
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere.
Located in Library / No RBINS Staff publications
Article Reference Bistability in the redox chemistry of sediments and oceans
For most of Earth’s history, the ocean’s interior was pervasively anoxic and showed occasional shifts in ocean redox chemistry between iron-buffered and sulfide-buffered states. These redox transitions are most often explained by large changes in external inputs, such as a strongly altered delivery of iron and sulfate to the ocean, or major shifts in marine productivity. Here, we propose that redox shifts can also arise from small perturbations that are amplified by nonlinear positive feedbacks within the internal iron and sulfur cycling of the ocean. Combining observational evidence with biogeochemical modeling, we show that both sedimentary and aquatic systems display intrinsic iron–sulfur bistability, which is tightly linked to the formation of reduced iron–sulfide minerals. The possibility of tipping points in the redox state of sediments and oceans, which allow large and nonreversible geochemical shifts to arise from relatively small changes in organic carbon input, has important implications for the interpretation of the geological rock record and the causes and consequences of major evolutionary transitions in the history of Earth’s biosphere
Located in Library / RBINS Staff Publications 2020
Article Reference Body distribution of toxic peptides in larvae of a pergid and an argid sawfly species
Located in Library / RBINS Staff Publications 2020
Inproceedings Reference BopCo, a barcoding facility for organisms and tissues of policy concern, and its role in the identification of vector species
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Boussu-Boussu: la faune du château de Boussu
Located in Library / RBINS Staff Publications
Inproceedings Reference Brain evolution of early placental mammals: the impact of the end-Cretaceous mass extinction on the the neurosensory system of our distant relatives
The end-Cretaceous mass extinction, 66 million years ago, profoundly reshaped the biodiversity of our planet. After likely originating in the Cretaceous, placental mammals (species giving live birth to well-developed young) survived the extinction and quickly diversified in the ensuing Paleocene. Compared to Mesozoic species, extant placentals have advanced neurosensory abilities, enabled by a proportionally large brain with an expanded neocortex. This brain construction was acquired by the Eocene, but its origins, and how its evolution relates to extinction survivorship and recovery, are unclear, because little is known about the neurosensory systems of Paleocene species. We used high-resolution computed tomography (CT) scanning to build digital brain models in 29 extinct placentals (including 23 from the Paleocene). We added these to data from the literature to construct a database of 98 taxa, from the Jurassic to the Eocene, which we assessed in a phylogenetic context. We find that the Phylogenetic Encephalization Quotient (PEQ), a measure of relative brain size, increased in the Cretaceous along branches leading to Placentalia, but then decreased in Paleocene clades (taeniodonts, phenacodontids, pantodonts, periptychids, and arctocyonids). Later, during the Eocene, the PEQ increased independently in all crown groups (e.g., euarchontoglirans and laurasiatherians). The Paleocene decline in PEQ was driven by body mass increasing much more rapidly after the extinction than brain volume. The neocortex remained small, relative to the rest of the brain, in Paleocene taxa and expanded independently in Eocene crown groups. The relative size of the olfactory bulbs, however, remained relatively stable over time, except for a major decrease in Euarchontoglires and some Eocene artiodactyls, while the petrosal lobules (associated with eye movement coordination) decreased in size in Laurasiatheria but increased in Euarchontoglires. Our results indicate that an enlarged, modern-style brain was not instrumental to the survival of placental mammal ancestors at the end-Cretaceous, nor to their radiation in the Paleocene. Instead, opening of new ecological niches post-extinction promoted the diversification of larger body sizes, while brain and neocortex sizes lagged behind. The independent increase in PEQ in Eocene crown groups is related to the expansion of the neocortex, possibly a response to ecological specialization as environments changed, long after the extinction. Funding Sources Marie Sklodowska-Curie Actions, European Research Council Starting Grant, National Science Foundation, Belgian Science Policy Office, DMNS No Walls Community Initiative.
Located in Library / RBINS Staff Publications 2020