-
High expectation, low implementation: perceptions of African fish and fisheries experts on genetic indicators in fisheries management
-
Located in
Library
/
RBINS Staff Publications 2025
-
High water temperature significantly influences swimming performance of New Zealand migratory species
-
Anthropogenic structures in freshwater systems pose a significant threat by fragmenting habitats. Effective fish passage solutions must consider how environmental changes introduce variability into swimming performance. As temperature is considered the most important external factor influencing fish physiology, it is especially important to consider its effects on fish swimming performance. Even minor alterations in water properties, such as temperature and velocity, can profoundly affect fish metabolic demands, foraging behaviours, fitness and, consequently, swimming performance and passage success. In this study, we investigated the impact of varying water temperatures on the critical swimming speeds of four migratory New Zealand species. Our findings revealed a significant reduction in critical swimming speeds at higher water temperatures (26°C) compared to lower ones (8 and 15°C) for three out of four species (Galaxias maculatus, Galaxias brevipinnis and Gobiomorphus cotidianus). In contrast, Galaxias fasciatus exhibited no significant temperature-related changes in swimming performance, suggesting species-specific responses to temperature. The cold temperature treatment did not impact swimming performance for any of the studied species. As high water temperatures significantly reduce fish swimming performance, it is important to ensure that fish passage solutions are designed to accommodate a range of temperature changes, including spatial and temporal changes, ranging from diel to decadal fluctuations. Our research underscores the importance of incorporating temperature effects into fish passage models for habitat restoration, connectivity initiatives, and freshwater fish conservation. The influence of temperature on fish swimming performance can alter migration patterns and population dynamics, highlighting the need for adaptive conservation strategies. To ensure the resilience of freshwater ecosystems it is important to account for the impact of temperature on fish swimming performance, particularly in the context of a changing climate.
Located in
Library
/
RBINS Staff Publications 2024
-
High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data
-
A total of 84 seismic profiles, mainly from the western and eastern deltas of Lake Issyk-Kul, were used to identify lake-level changes. Seven stratigraphic sequences were reconstructed, each containing a series of delta lobes that were formed during former lake-level stillstands or during slow lake-level increase or decrease. The lake level has experienced at least four cycles of stepwise rise and fall of 400202fm or more. These fluctuations were mainly caused by past changes in the atmospheric circulation pattern. During periods of low lake levels, the Siberian High was likely to be strong, bringing dry air masses from the Mongolian steppe blocking the midlatitude Westerlies. During periods of high lake levels, the Siberian High must have been weaker or displaced, and the midlatitude Westerlies could bring moister air masses from the Mediterranean and North Atlantic regions.
Located in
Library
/
RBINS Staff Publications 2017
-
High-Latitude Dinosaur Nesting Strategies during the Latest Cretaceous in North-Eastern Russia
-
Located in
Library
/
RBINS Staff Publications 2023
-
High-resolution facies analysis of a coastal sabkha in the eastern Gulf of Salwa (Qatar): A spatio-temporal reconstruction.
-
Located in
Library
/
RBINS Staff Publications 2022
-
High-throughput sequencing of PCR amplicons: a test to barcode a bee species complex (Hymenoptera: Apoidea: Halictidae) and survey Wolbachia infections
-
Located in
Library
/
RBINS Staff Publications
-
Highly polymorphic mitochondrial DNA and deceiving haplotypic differentiation: implications for assessing population genetic differentiation and connectivity
-
Background Hyperdiverse mtDNA with more than 5% of variable synonymous nucleotide sites can lead to erroneous interpretations of population genetic differentiation patterns and parameters (φST, DEST). We illustrate this by using hyperdiverse mtDNA markers to infer population genetic differentiation and connectivity in Melarhaphe neritoides, a NE Atlantic (NEA) gastropod with a high dispersal potential. We also provide a recent literature example of how mtDNA hyperdiversity may have misguided the interpretation of genetic connectivity in the crab Opecarcinus hypostegus. Results mtDNA variation surveyed throughout the NEA showed that nearly all M. neritoides specimens had haplotypes private to populations, suggesting at first glance a lack of gene flow and thus a strong population genetic differentiation. Yet, the bush-like haplotype network, though visually misleading, showed no signs of phylogeographic or other haplotype structuring. Coalescent-based gene flow estimates were high throughout the NEA, irrespective of whether or not mtDNA hyperdiversity was reduced by removing hypervariable sites. Conclusions Melarhaphe neritoides seems to be panmictic over the entire NEA, which is consistent with its long-lived pelagic larval stage. With hyperdiverse mtDNA, the apparent lack of shared haplotypes among populations does not necessarily reflect a lack of gene flow and/or population genetic differentiation by fixation of alternative haplotypes (DEST ≈ 1 does not a fortiori imply φST ≈ 1), but may be due to (1) a too low sampling effort to detect shared haplotypes and/or (2) a very high mutation rate that may conceal the signal of gene flow. Hyperdiverse mtDNA can be used to assess connectivity by coalescent-based methods. Yet, the combined use of φST and DEST can provide a reasonable inference of connectivity patterns from hyperdiverse mtDNA, too.
Located in
Library
/
RBINS Staff Publications 2019
-
Historical biogeography, systematics, and integrative taxonomy of the non‑Ethiopian speckled pelage brush‑furred rats (Lophuromys flavopunctatus group)
-
Located in
Library
/
RBINS Staff Publications 2021
-
Historical DNA metabarcoding of the prey and microbiome of trematomid fishes using museum samples.
-
Located in
Library
/
RBINS Staff Publications 2018
-
Historical management of equine resources in France from the Iron Age to the Modern Period
-
Alongside horses, donkeys and their first-generation hybrids represent members of the Equidae family known for their social, economic and symbolic importance in protohistoric and historical France. However, their relative importance and their respective roles in different regions and time periods are difficult to assess based on textual, iconographic and archaeological evidence. This is both due to incomplete, partial and scattered historical sources and difficulties to accurately assign fragmentary archaeological remains at the proper taxonomic level. DNA- based methods, however, allow for a robust identification of the taxonomic status of ancient equine osseous material from minimal sequence data. Here, we leveraged shallow ancient DNA sequencing and the dedicated Zonkey computational pipeline to obtain the first baseline distribution for horses, mules and donkeys in France from the Iron Age to the Modern period. Our collection includes a total of 873 ancient specimens spanning 128 ubiquitous and the most dominant species identified, our dataset reveals the importance of mule breeding during Roman times, especially between the 1st and 3rd centuries CE (Common Era), where they represented between 20.0% and 34.2% of equine assemblages. In contrast, donkeys were almost absent from northern France as-semblages during the whole Roman period, but replaced mules in rural and urban commercial and economic centers from the early Middle Ages. Our work also identified donkeys of exceptional size during Late Antiquity, which calls for a deep reassessment of the true morphological space of past equine species. This study confirmed the general preference toward horses throughout all time periods investigated but revealed dynamic manage-ment strategies leveraging the whole breadth of equine resources in various social, geographic and temporal contexts.
Located in
Library
/
RBINS Staff Publications 2021