-
Oxyarietites boletzkyi n.gen., n.sp., nouveau genre et nouvelle espèce d’ammonite dans le Sinémurien inférieur de Bourgogne (France) : un rare précurseur des morphologies oxycônes pour le Jurassique.
-
L’une des toutes premières ammonites à coquille presque oxycône observée dans les séries fossilifères après la crise faunique de la limite Trias/Jurassique est décrite. Elle provient du Sinémurien inférieur (chronozone à Semicostatum ou à Turneri) de Bourgogne (Mavilly-Mandelot, Côte-d’Or, France). Cette nouvelle forme, Oxyarietites boletzkyi n. gen., n. sp., possède une coquille involute, comprimée et carénée dont le type clairement suboxycône est nouveau pour le Sinémurien inférieur. En raison de son aire ventrale carénée, ce taxon se rattache probablement à la super-famille des Arietitoidea Hyatt, 1875 sensu Guex (1995) mais son attribution familiale est incertaine et son origine évolutive reste énigmatique. Outre son intérêt taxonomique, cette découverte est importante car elle pose le problème de la valeur adaptative des caractères liés à la géométrie des coquilles d’ammonites. Il est actuellement admis que les coquilles involutes, comprimées et carénées de type suboxycône et oxycône favorisent significativement l’hydrodynamisme et donc la mobilité des espèces qui les possèdent. Il est surprenant que l’acquisition de ce probable avantage adaptatif n’ait pas favorisé l’implantation au sein des peuplements du nouveau taxon, qui reste une forme rare. Dans tous les cas, la découverte d’O. boletzkyi n. gen., n. sp. rajeunit d’environ 2 millions d’années la mise en place des morphologies oxycônes au cours de la phase de reconstitution de la biodiversité post-crise Trias/Jurassique. Oxyarietites boletzkyi n.gen., n. sp., a new genus and species of ammonite for the Lower Sinemurian of Burgundy (France): a rare forerunner of the oxycone morphologies for the Jurassic. One of the very first quasi-oxycone ammonites following the Triassic/Jurassic boundary crisis is described. It was collected from the fossiliferous Lower Sinemurian (Semicostatum or Turneri Chronozone) strata of Burgundy (Mavilly-Mandelot, Côte-d’Or, France). The new taxon, Oxyarietites boletzkyi n. gen., n.sp., possesses an involute, compressed and keeled shell of suboxycone morphology, a shell type previously unknown for the Lower Sinemurian. The discovery makes younger by about 2 Ma the emergence of keeled (sub)oxycone shells following the Triassic/Jurassic boundary crisis. Its obviously keeled ventral area allows a probable assignation to the Arietitoidea Hyatt, 1875 sensu Guex (1995) superfamily, but family level assignation and its evolutionary origin remain obscure. Although, it is generally accepted that involute, compressed and keeled suboxycone and oxycone ammonite shells possess the best hydrodynamical abilities and mobility, the acquisition of this probable adaptive advantage in O. boletzkyi n. gen., n. sp. does not go together with abundancy in the fossil record.
Located in
Library
/
RBINS Staff Publications
-
The Dababiya Corehole, Upper Nile Valley, Egypt: Preliminary results.
-
The Dababiya corehole was drilled in the Dababiya Quarry (Upper Nile Valley, Egypt), adjacent to the GSSP for the Paleocene/ Eocene boundary, to a total depth of 140 m and bottomed in the lower Maastrichtian Globotruncana aegyptiaca Zone of the Dakhla Shale Formation. Preliminary integrated studies on calcareous plankton (foraminifera, nannoplankton), benthic foraminifera, dinoflagellates, ammonites, geochemistry, clay mineralogy and geophysical logging indicate that: 1) The K/P boundary lies between 80.4 and 80.2 m, the Danian/Selandian boundary between ~ 41 and 43 m, the Selandian/Thanetian boundary at ~ 30 m (within the mid-part of the Tarawan Chalk) and the Paleocene/Eocene boundary at 11.75 m (base [planktonic foraminifera] Zone E1 and [calcareous nannoplankton] Zone NP9b); 2) the Dababiya Quarry Member (=Paleocene/Eocene Thermal Maximum interval) extends from 11.75 to 9.5 m, which is ~1 m less than in the adjacent GSSP outcrop.; 3) the Late Cretaceous (Maastrichtian) depositional environment was nearshore, tropical-sub tropical and nutrient rich; the latest Maastrichtian somewhat more restricted (coastal); and the early Danian cooler, low(er) salinity with increasing warmth and depth of water (i.e., more open water); 4) the Paleocene is further characterized by outer shelf (~ 200 m), warm water environments as supported by foraminifera P/B ratios > 85% (~79-28 m), whereas benthic foraminifera dominate (>70%) from ~27-12 m (Tarawan Chalk and Hanadi Member) due, perhaps, in part to increased dissolution (as observed in nearby outcrop samples over this interval); 5) during the PETM, enhanced hydrodynamic conditions are inferred to have occurred on the sea-floor with increased river discharge (in agreement with sedimentologic evidence), itself a likely cause for very high enhanced biological productivity on the epicontinental shelf of Egypt; 6) correlation of in situ measured geophysical logs of Natural Gamma Ray (GR), Single-Point Resistance (PR), Self-Potential (SP), magnetic susceptibility(MS), and Resistivity, and Short Normal (SN) and Long Normal (LN) showed correspondence to the lithologic units. The Dababiya Quarry Member, in particular, is characterized by very high Gamma Ray and Resistivity Short Normal values.
Located in
Library
/
RBINS Staff Publications
-
What's the internet doing to our brains?
-
Located in
Library
/
RBINS Staff Publications
-
Actieplan zeehond van defensief naar offensief milieubeleid in de Noordzee.
-
Located in
Library
/
RBINS Staff Publications
-
Environmental monitoring of offshore renewable energy installations : A plea for timely knowledge sharing.
-
Located in
Library
/
RBINS Staff Publications
-
Kaart van het gebruik van de Belgische zeegebieden - Carte de l'usage des espaces marins belges.
-
Located in
Library
/
RBINS Staff Publications
-
New species in the Old World: Europe as a frontier in biodiversity exploration, a test bed for 21st century taxonomy.
-
The number of described species on the planet is about 1.9 million, with ca. 17,000 new species described annually, mostly from the tropics. However, taxonomy is usually described as a science in crisis, lacking manpower and funding, a politically acknowledged problem known as the Taxonomic Impediment. Using data from the Fauna Europaea database and the Zoological Record, we show that contrary to general belief, developed and heavily-studied parts of the world are important reservoirs of unknown species. In Europe, new species of multicellular terrestrial and freshwater animals are being discovered and named at an unprecedented rate: since the 1950s, more than 770 new species are on average described each year from Europe, which add to the 125,000 terrestrial and freshwater multicellular species already known in this region. There is no sign of having reached a plateau that would allow for the assessment of the magnitude of European biodiversity. More remarkably, over 60\% of these new species are described by non-professional taxonomists. Amateurs are recognized as an essential part of the workforce in ecology and astronomy, but the magnitude of non-professional taxonomist contributions to alpha-taxonomy has not been fully realized until now. Our results stress the importance of developing a system that better supports and guides this formidable workforce, as we seek to overcome the Taxonomic Impediment and speed up the process of describing the planetary biodiversity before it is too late.
Located in
Library
/
RBINS Staff Publications
-
Offshore intertidal Hard substrata : a New Habitat Promoting Non-indigenous Species in the Southern North Sea.
-
Located in
Library
/
RBINS Staff Publications
-
Towards a List of Available Names in Zoology , partim Phylum Rotifera
-
Many, mostly older, names of animal species are nomenclaturally problematic, either because their orthography is unstable, or they cannot be linked reliably to a taxonomic identity, due to the lack of recognisable descriptions and/or types. Yet, they represent available (sensu International Code of Zoological Nomenclature) names and must be taken into account in zoological works. This situation, with available senior, yet dubious names confounding nomenclature, is undesirable. It creates uncertainties at a time when molecular approaches are revolutionizing our concepts of species diversity, and fails us when the current extinction crisis calls for efficient, accurate, and constructive approaches to document, monitor, and conserve biodiversity. The International Code of Zoological Nomenclature (The Code) provides a means to address this issue by restricting availability, application and orthography of names to those included in the List of Available Names in Zoology (LAN). The Code (Art. 79) allows an international body of zoologists in consultation with the Commission to propose a candidate part of the LAN for a major taxonomic field. We explore this possibility for 3570 species-group names of Phylum Rotifera (of which 665 are problematic), by presenting such a candidate Rotifera part of the LAN. The web site of the International Commission on Zoological Nomenclature (http://www.iczn.org) will hold both the candidate list and a forum to facilitate consultation on the candidate list, while the list itself also can already be freely downloaded from three other Internet sites: http://fada.biodiversity.be, http://rotifer.ansp.org/LAN, and www.hausdernatur.at/rotifera. We give here an overview of the general approach and procedures applied in preparation of the candidate list, and anticipate that our effort will promote the process as well as result in a standard list of names for use in taxonomy, the Global Names Architecture and other biodiversity information initiatives.
Located in
Library
/
RBINS Staff Publications
-
Offshore intertidal Hard substrata : a New Habitat Promoting Non-indigenous Species in the Southern North Sea.
-
Located in
Library
/
RBINS Staff Publications