Introduction: Swimmer's itch (or cercarial dermatitis) is caused by avian and mammalian blood flukes, a parasitic infection affecting people worldwide. In particular, avian blood flukes of the genus Trichobilharzia, including Trichobilharzia regenti, are known for causing swimmer's itch. While these parasites typically infect waterfowl as final hosts, incidental infections in humans by cercariae can occur. Such infections trigger immune responses leading to painful, itchy skin lesions. In experimental animals, T. regenti has however shown the ability to evade immune responses, causing neuroinflammation. Recent decades have witnessed an increase in swimmer's itch cases across Europe, turning it into an emerging zoonosis. Methods: Following a swimmer's itch case in Kampenhout (Belgium) in 2022, a malacological and parasitological survey was conducted at the transmission site, consisting of a private pond and adjacent creek. Results: Six snail species were collected, including Ampullaceana balthica, a common intermediate host for Trichobilharzia parasites. Shedding experiments and DNA barcoding identified one snail specimen infected with T. regenti, a new species record for Belgium. This finding further strengthens the link between T. regenti and cercarial dermatitis. Additionally, Echinostomatidae sp. and Notocotylus sp. were isolated from other A. balthica specimens. However, the absence of reference DNA sequences hindered genus- and species-level identification for these parasites. Conclusions: The presence of T. regenti in Belgium may have significant clinical implications, emphasizing the need for heightened diagnostic awareness among medical professionals. The lack of species-level identification for other parasite species underscores the need for comprehensive DNA databases for trematodes. These findings reveal the necessity for a Belgian framework to promptly detect and monitor zoonotic outbreaks of trematode parasites within the One Health context.
Located in
Library
/
RBINS Staff Publications 2025
Environmental DNA (eDNA) metabarcoding has lagged in parasite biodiversity assessments. We implemented this method to examine parasite diversity in sediment and water from 4 physically connected aquatic habitats in coastal South Carolina, USA, as part of a ParasiteBlitz in April 2023. Sediment was collected using a syringe corer, and water was sampled using active filtration and passive collection. Five amplicon libraries, using primers targeting portions of the mitochondrial COI of platyhelminths and 18S ribosomal RNA genes of nematodes, myxozoans, microsporidians, and protists, successfully yielded parasite sequences. Out of >5.8 million sequences, we identified >1,000 parasite amplicon sequence variants (ASVs) corresponding to ~600 parasite operational taxonomic units, from 6 parasite groups. Most diversity was observed among the microsporidians, whose assay demonstrated the highest fidelity. Actively-filtered water samples captured ASVs of all 6 groups, whereas sediment captured only 4, despite yielding 3× as many ASVs. Low DNA yields from passive water samples resulted in fewer, but some unique, ASVs representing 3 parasite groups. The most efficient sampling method varied with respect to parasite group across habitats, and the parasite communities from each habitat were distinct regardless of sampling method. We detected ASVs of 9 named species, 4 of which may represent introductions to the US. The abundance of our results demonstrates the effectiveness and efficiency of eDNA metabarcoding for assessing parasite diversity during short, intensive surveys, and highlights the critical need for more comprehensive sequence databases and the development of primers for those parasite taxa that elude detection using eDNA methods.
Located in
Library
/
RBINS Staff Publications 2025