Abstract Mercantour National Park (France) is recognized as a highly heterogeneous region with extremely varied geology, geomorphology and climatology, resulting in an exceptional biodiversity. From a hydrogeological point of view, it is also an area organized of small and discontinuous aquifers, their obligate groundwater fauna remaining absolutely unknown. This work explores the species richness of groundwaters in Mercantour National Park, using a sampling design at the catchment (six major valleys) and aquifer scales (aquifers in consolidated rocks and unconsolidated sediments). A major finding of this study is the discovery of 44 species restricted to groundwater, from which 43 are new to the Park and 10 are new to Science. Although a relatively small number of sites were sampled (53), the area may be considered as a new hotspot of groundwater biodiversity at the European level. The particular structure of the groundwater network, the high environmental heterogeneity of the region, and its Mediterranean position may explain such a high biodiversity. Species rarefaction curve showed that many species have yet to be discovered in groundwater of the Mercantour National Park. With more than 78% of species collected in the hyporheic zone, this study also highlights the importance of porous aquifers in sustaining groundwater biodiversity of mountainous regions. Key words: groundwater invertebrates, stygobionts, biodiversity hotspot, Mercantour National Park, hyporheic zone, spring. Résumé Biodiversité dans les eaux souterraines de montagne. Le Parc National du Mercantour: un ‘hotspot’ européen. Le Parc National du Mercantour est une région physiquement très hétérogène, avec des faciès géologiques, géomorphologiques et climatologiques extrêmement variés, à l’origine d’une biodiversité exceptionnelle. D'un point de vue hydrogéologique, son réseau souterrain est organisé en aquifères discontinus et de petite taille, dont la faune aquatique (stygobie) est aujourd’hui inconnue. Ce travail explore la richesse spécifique des eaux souterraines du Parc National du Mercantour, après la mise en œuvre d'un plan d'échantillonnage prenant en compte l'hétérogénéité environnementale à l’échelle du bassin versant (six vallées majeures) et de l'aquifère (aquifère fissuré ou poreux). Le premier fait marquant est la récolte de 44 espèces stygobies, 43 étant nouvelles pour le parc et 10 nouvelles pour la Science. Sur la base d’un nombre relativement faible de sites (53), cette zone peut être considérée comme un nouveau ‘hotspot’ de biodiversité des eaux souterraines à l'échelle européenne. La structure particulière du réseau hydrogéologique, l'hétérogénéité environnementale élevée, et la position méditerranéenne de cette région, pourraient expliquer une telle biodiversité. La courbe de raréfaction des espèces montre que nos connaissances sur le Mercantour sont néanmoins loin d'être complètes et que de nombreuses espèces restent encore à découvrir. Avec plus de 78 % des espèces récoltées dans la zone hyporhéique, ce travail souligne également le rôle des aquifères poreux, dans le maintien de la biodiversité des eaux souterraines de montagne. Mots-clés: invertébrés souterrains, stygobies, ‘hotspot’ de biodiversité, Parc National du Mercantour, zone hyporhéique, source.
Located in
Library
/
RBINS Staff Publications
Worldwide reduction of carbon emissions is needed to help reduce the effects of climate change. Twenty-seven member states of the European Union have committed to reduce emissions by 55% of 1990 levels by 20301. To achieve this, an unprecedented installation of offshore marine renewable energy devices (wind, wave, tidal, solar) and cable networks is required2. To date, offshore wind energy is the largest marine renewable energy provider, currently producing globally 35 GW with an increase to 70 GW expected by 20253 and a potential increase worldwide to 1000 GW expected by 20504. Europe has the majority of offshore wind farms (OWFs) with a capacity of 28 GW5, which corresponds to 5,795 grid-connected wind turbines across 123 OWFs and 12 countries5. Marine biodiversity and their associated ecosystems are increasingly being affected by anthropogenic pressures, such as the growing number of artificial structures6,7, eutrophication, fisheries and climate change8–10. The introduction of man-made structures can potentially have both positive and negative effects on marine ecosystems11– 14. Soft-bottom communities are altered close to artificial structures15–17, while a significant amount of marine growth colonises the artificial hard structures18,19. To assess the effects of man-made structures on the benthic community, most environmental impact assessment data collection studies have been conducted over small spatial and temporal scales20 such as single turbines or single OWFs and associated infrastructure15,21,22. Some countries have coordinated programmes to standardise data collection methods on soft sediments (e.g., Germany23, Belgium24, the Baltic Sea25), and there are existing methods to study macrofauna on natural hard substrates such as rocky bottoms26. However, there are no internationally agreed methods, metrics or databases for the data collection, which is critical for understanding the effects of artificial structures on marine ecosystems. Data are disparate owing to differences in data diversity, regarding (i) sampling devices and methods, (ii) sample analysis (e.g., variables, taxonomic resolution), (iii) data storage and management, as well as (iv) continuously changing taxonomy. This results in a lack of consistent data with regards to offshore artificial structures and benthos. Thus, investigation of large-scale benthic effects requires merging data from different sources, which is challenging (time consuming, costly, difficult) or even not possible19. Taken together, the available data are underutilised. A few attempts have been made to collect and analyse biodiversity data from different substrates (wind turbines, oil and gas platforms, surrounding soft sediments and rocky reefs) in a single region19,27,28. Ecosystem-based management requires a deep understanding of the effects of artificial structures over large spatial and temporal scales that exceed budgets, timeframes and jurisdictional borders. Data sharing through the creation of an integrated database can provide multiple benefits for science, industry, and policy. It could be used for large-scale research studies examining the aforementioned effects and facilitate ecosystem-based management. Furthermore, the creation of a centralised dataset could enable answering scientific questions regarding stepping stone effects beyond the scale of individual OWFs, platforms or countries29,30. Industry could exploit this dataset for environment-friendly planning, predicting effects of new activities at offshore locations. Finally, sharing such data is crucial in developing fact-based scientific advice for decommissioning decisions for various stakeholders. This paper presents the first data collection ‘Biodiversity Information of benthic Species at ARtificial structures’ (BISAR). BISAR contains data on benthic macrofauna collected in environmental impact studies, scientific projects and species inventories conducted at 17 artificial offshore structures in the North Sea between 2003 and 2019. The structures include OWFs, oil and gas platforms, a research platform and a geogenic reef to compare natural and artificial reef communities. BISAR includes data from soft and hard substrate studies (34 artificial structures), allowing comparisons of changes in both habitat types. This data collection currently contains data from a total of 3864 samples with 890 taxa. BISAR is the first data product containing harmonised and quality-checked international data on benthos from substrates influenced by artificial structures in the North Sea. Various stakeholders (e.g., industry, public authorities, research) will profit from the BISAR data collection as the greatest challenge in an era of blue growth is to get access to data from various sources
Located in
Library
/
RBINS Staff Publications 2025
AbstraitLes systèmes lacustres subissent de fortes pressions qui ont un impact sur leur biodiversité et les services écosystémiques associés. Cela est particulièrement grave en Afrique de l’Ouest et dans les pays en développement, qui manquent de ressources et de capacités techniques pour l’élimination des déchets, la purification de l’eau, ainsi que de capacités scientifiques suffisantes pour la biosurveillance et la gestion intégrée. La préservation, la surveillance et l'amélioration de la qualité des lacs dans ces pays revêtent cependant une importance primordiale. Dans les pays développés, un ensemble d'indicateurs et d'indices multimétriques ont été intégrés à la biosurveillance et à l'évaluation des lacs. Nous évaluons ici les nombreuses procédures, mesures et indices utilisant les macroinvertébrés comme indicateurs de la qualité des lacs et évaluons leur applicabilité dans les lacs d’Afrique de l’Ouest et, plus généralement, dans les pays en développement. Nous proposons un cadre de suivi basé sur les macroinvertébrés adapté à ces pays, incluant des recommandations pour développer de nouveaux indices et adapter les scores de tolérance des taxons aux conditions locales. Ces travaux soulignent l’importance des macroinvertébrés pour la biosurveillance de la santé des lacs dans les lacs d’Afrique de l’Ouest et, plus généralement, dans les pays en développement.
Located in
Library
/
RBINS Staff Publications 2019