Skip to content. | Skip to navigation

Personal tools

You are here: Home
1705 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference The 10,000-year biocultural history of fallow deer and its implications for conservation policy
Over the last 10,000 y, humans have manipulated fallow deer populations with varying outcomes. Persian fallow deer (Dama mesopotamica) are now endangered. European fallow deer (Dama dama) are globally widespread and are simultaneously considered wild, domestic, endangered, invasive and are even the national animal of Barbuda and Antigua. Despite their close association with people, there is no consensus regarding their natural ranges or the timing and circumstances of their human-mediated translocations and extirpations. Our mitochondrial analyses of modern and archaeological specimens revealed two distinct clades of European fallow deer present in Anatolia and the Balkans. Zooarchaeological evidence suggests these regions were their sole glacial refugia. By combining biomolecular analyses with archaeological and textual evidence, we chart the declining distribution of Persian fallow deer and demonstrate that humans repeatedly translocated European fallow deer, sourced from the most geographically distant populations. Deer taken to Neolithic Chios and Rhodes derived not from nearby Anatolia, but from the Balkans. Though fallow deer were translocated throughout the Mediterranean as part of their association with the Greco-Roman goddesses Artemis and Diana, deer taken to Roman Mallorca were not locally available Dama dama, but Dama mesopotamica. Romans also initially introduced fallow deer to Northern Europe but the species became extinct and was reintroduced in the medieval period, this time from Anatolia. European colonial powers then transported deer populations across the globe. The biocultural histories of fallow deer challenge preconceptions about the divisions between wild and domestic species and provide information that should underpin modern management strategies.
Located in Library / RBINS Staff Publications 2023
Article Reference The first record of the genus Olcinia Stäl, 1877 from Cambodia and Vietnam with the description of two new species (Orthoptera: Tettigoniidae: Pseudophyllinae: Cymatomerini)
Located in Library / RBINS collections by external author(s)
Article Reference Cable Bacteria Activity Modulates Arsenic Release From Sediments in a Seasonally Hypoxic Marine Basin
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Agropastoral and dietary practices of the northern Levant facing Late Holocene climate and environmental change: Isotopic analysis of plants, animals and humans from Bronze to Iron Age Tell Tweini
One of the largest isotopic datasets of the ancient Eastern Mediterranean region is evaluated, based on plants (n = 410), animals (n = 210) and humans (n = 16) from Tell Tweini (Syria). Diachronic analysis of plant and faunal specimens from four main periods of occupation: Early Bronze Age (2600–2000 BC), Middle Bronze Age (2000–1600 BC), Late Bronze Age (1600–1200 BC) and Iron Age (1200–333 BC) were investigated. Mean Δ13C results from seven plant species reveal emmer and free threshing wheat, olives, bitter vetch, rye grass and barley were adequately or well-watered during all periods of occupation. The grape Δ13C results suggest excellent growing conditions and particular care for its cultivation. The δ15N results indicate that especially the emmer and free threshing wheats received some manure inputs throughout the occupation sequence, while these were likely further increased during the Iron Age, encompassing also the olive groves and grape vineyards. Generally, domestic animals (cattle, sheep, goats) had C3 terrestrial diets and were kept together in similar environments. However, some animals consumed significant amounts of marine or C4 plants, possibly from disturbed habitats due to land use pressure or salt tolerant grasses and shrubs from wetland environments, which were recorded in the direct vicinity of the site. Middle Bronze Age humans consumed a C3 terrestrial diet with no measurable input from C4, freshwater or marine protein sources. Interestingly, the human diet was relatively low in animal protein and appears comparable to what is considered today a typical Mediterranean diet consisting of bread (wheat/barley), olives, grapes, pulses, dairy products and small amounts of meat. The combined isotopic analysis of plants, animals and humans from Tell Tweini represents unbroken links in the food chain which create unparalleled opportunities to enhance our current understanding of environmental conditions, climate change and lifeways in past populations from the Eastern Mediterranean.
Located in Library / RBINS Staff Publications 2024
Inproceedings Reference The GEPATAR project: GEotechnical and Patrimonial Archives Toolbox for ARchitectural conservation in Belgium
Belgium is well-known for its diverse collection of built heritage, visited every year by millions of people. Because of its cultural and economic importance, conservation is a priority at both federal and regional levels. Monuments may suffer from structural instabilities related to industrial and urban development, such as groundwater extraction, mining and excavation activities. Adequate protection and preservation requires an integrated analysis of environmental, architectural and historical parameters. The aim of the GEPATAR project is to create an online interactive geo-information tool that integrates information about Belgian heritage buildings and the occurrence of ground movements. The toolbox will allow the user to view and be informed about buildings potentially at risk due to differential ground movements and thus help improving the management of built patrimony. Countrywide deformation maps were produced by applying advanced multi-temporal InSAR techniques to time-series of SAR data. We used StaMPS (Stanford Method for Persistent Scatterers; Hooper et al. 2012) to process ERS-1/2 and Envisat archive data and MSBAS (Multidimensional Small Baseline Subsets; Samsonov & d’Oreye 2012) to combine both ascending and descending tracks of Sentinel-1. High-resolution deformation maps of selected urban centres were obtained by processing VHR SAR data (TerraSAR-X and CosmoSkyMed). Within the GEPATAR toolbox, the deformation maps are integrated with other geo-data layers such as geology, land-use, the location of built heritage and architectural data. Feature-based data fusion techniques are applied to create ground movement risk maps. The output risk maps will be regularly updated with the availability of new SAR acquisitions.
Located in Library / RBINS Staff Publications 2019
Article Reference First interception of the anthicid beetle Anthelephila caeruleipennis (La Ferté-Sénectère, 1847) in Belgium (Coleoptera: Anthicidae: Anthicinae)
Located in Library / RBINS Staff Publications 2018
Article Reference Note sur quelques espèces invasives d'Otiorhynchus Germar, 1822 en Belgique (Coleoptera: Curculionidae)
Located in Library / RBINS Staff Publications 2018
Article Reference Mangrove ecosystem properties regulate high water levels in a river delta
Intertidal wetlands, such as mangroves in the tropics, are increasingly recognized for their role in nature-based mitigation of coastal flood risks. Yet it is still poorly understood how effective they are at attenuating the propagation of extreme sea levels through large (order of 100 km2) estuarine or deltaic systems, with complex geometry formed by networks of branching channels intertwined with mangrove and intertidal flat areas. Here, we present a delta-scale hydrodynamic modelling study, aiming to explicitly account for these complex landforms, for the case of the Guayas delta (Ecuador), the largest estuarine system on the Pacific coast of Latin America. Despite coping with data scarcity, our model accurately reproduces the observed propagation of high water levels during a spring tide. Further, based on a model sensitivity analysis, we show that high water levels are most sensitive to the mangrove platform elevation and degree of channelization but to a much lesser extent to vegetation-induced friction. Mangroves with a lower surface elevation, lower vegetation density, and higher degree of channelization all favour a more efficient flooding of the mangroves and therefore more effectively attenuate the high water levels in the deltaic channels. Our findings indicate that vast areas of channelized mangrove forests, rather than densely vegetated forests, are most effective for nature-based flood risk mitigation in a river delta.
Located in Library / RBINS Staff Publications 2024
Article Reference Mangroves as nature-based mitigation for ENSO-driven compound flood risks in a river delta
Densely populated coastal river deltas are very vulnerable to compound flood risks, coming from both oceanic and riverine sources. Climate change may increase these compound flood risks due to sea level rise and intensifying precipitation events. Here, we investigate to what extent nature-based flood defence strategies, through conservation of mangroves in a tropical river delta, can contribute to mitigate the oceanic and riverine components of compound flood risks. While current knowledge of estuarine compound flood risks is mostly focussed on short-term events such as storm surges (taking one or a few days), longer-term events, such as El Niño events (continuing for several weeks to months) along the Pacific coast of Latin America, are understudied. Here, we present a hydrodynamic modelling study of a large river delta in Ecuador aiming to elucidate the compound effects of El Niño driven oceanic and riverine forcing on extreme high water level propagation through the delta, and in particular, the role of mangroves in reducing the compound high water levels. Our results show that the deltaic high water level anomalies are predominantly driven by the oceanic forcing but that the riverine forcing causes the anomalies to amplify upstream. Furthermore, mangroves in the delta attenuate part of the oceanic contribution to the high water level anomalies, with the attenuating effect increasing in the landward direction, while mangroves have a negligible effect on the riverine component. These findings show that mangrove conservation and restoration programs can contribute to nature-based mitigation, especially the oceanic component of compound flood risks in a tropical river delta.
Located in Library / RBINS Staff Publications 2024
Article Reference A global meta-analysis on the drivers of salt marsh planting success and implications for ecosystem services
Planting has been widely adopted to battle the loss of salt marshes and to establish living shorelines. However, the drivers of success in salt marsh planting and their ecological effects are poorly understood at the global scale. Here, we assemble a global database, encompassing 22,074 observations reported in 210 studies, to examine the drivers and impacts of salt marsh planting. We show that, on average, 53% of plantings survived globally, and plant survival and growth can be enhanced by careful design of sites, species selection, and novel planted technologies. Planting enhances shoreline protection, primary productivity, soil carbon storage, biodiversity conservation and fishery production (effect sizes = 0.61, 1.55, 0.21, 0.10 and 1.01, respectively), compared with degraded wetlands. However, the ecosystem services of planted marshes, except for shoreline protection, have not yet fully recovered compared with natural wetlands (effect size = −0.25, 95% CI −0.29, −0.22). Fortunately, the levels of most ecological functions related to climate change mitigation and biodiversity increase with plantation age when compared with natural wetlands, and achieve equivalence to natural wetlands after 5–25 years. Overall, our results suggest that salt marsh planting could be used as a strategy to enhance shoreline protection, biodiversity conservation and carbon sequestration.
Located in Library / RBINS Staff Publications 2024