The construction and operation of marine renewable energy developments (MREDs) will lead to, among other things, the emission of electromagnetic fields (EMF), underwater sound, and vibrations into the marine environment. Knowledge on these pressures and associated effects has been increasing over the past decade. Yet, many open questions with regard to the potential for MRED to impact on marine life remain. These information gaps pose challenges to the planning and deployment of MREDs. To address this, the European Union (EU) Commission, Directorate-General for Research and Innovation commissioned a study of the environmental effects of noise, vibrations and electromagnetic emissions from MREDs (Marine Renewable Energy, Vibration, Electromagnetic fields and Noise - MaRVEN). MaRVEN provides a review of the available literature related to environmental impacts of marine renewable energy devices and an in-depth analysis of studies on the environmental effects of noise, vibrations and electromagnetic emissions during installation and operation of wind, wave and tidal energy devices. The current norms and standards related to noise, vibrations and EMF were reviewed. On-site measurements and field experiments to fill priority knowledge gaps and to validate and build on the results obtained in reviews were undertaken. Finally, we outline a programme for further research and development with justified priorities.
Located in
Library
/
RBINS Staff Publications 2016
Samples from the Upper Frasnian (Devonian) of Lompret Quarry and Nismes railway section in Dinant Synclinorium, southern Belgium, yielded several chondrichthyan teeth and scales. The teeth belong to three genera: Phoebodus, Cladodoides and Protacrodus. The comparison with selected Late Frasnian chondrichthyan assemblages from the seas between Laurussia and Gondwana revealed substantial local differences of taxonomic composition due to palaeoenvironmental conditions, such as depth, distance to submarine platforms, oxygenation of water, and possibly also temperature. The assemblage from Belgium, with its high frequency of phoebodonts, is the most similar to that from the Ryauzyak section, South Urals, Russia, and the Horse Spring section, Canning Basin, Australia.
Located in
Library
/
RBINS Staff Publications 2017