Skip to content. | Skip to navigation

Personal tools

You are here: Home
3079 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Comparative suceptability of Macrotermes bellicosus and Trinervitermes occidentalis (Isoptera: Termitidae) to entomopathogenic nematodes from Benin
Located in Library / RBINS Staff Publications
Article Reference Comparative ultrastructure of the spermatogenesis of three species of Poecilosclerida (Porifera, Demospongiae)
Located in Library / RBINS Staff Publications 2019
Article Reference Comparing life history traits and tolerance to changing environments of two oyster species (Ostrea edulis and Crassostrea gigas) through Dynamic Energy Budget theory
To predict the response of the European flat oyster (Ostrea edulis) and Pacific cupped oyster (Crassostrea gigas/Magallana gigas) populations to environmental changes, it is key to understand their life history traits. The Dynamic Energy Budget (DEB) theory is a mechanistic framework that enables the quantification of the bioenergetics of development, growth and reproduction from fertilization to death across different life stages. This study estimates the DEB parameters for the European flat oyster, based on a comprehensive dataset, while DEB parameters for the Pacific cupped oyster were extracted from the literature. The DEB parameters for both species were validated using growth rates from laboratory experiments at several constant temperatures and food levels as well as with collected aquaculture data from the Limfjorden, Denmark, and the German Bight. DEB parameters and the Arrhenius temperature parameters were compared to get insight in the life history traits of both species. It is expected that increasing water temperatures due to climate change will be beneficial for both species. Lower assimilation rates and high energy allocation to soma explain O. edulis’ slow growth and low reproductive output. Crassostrea gigas’ high assimilation rate, low investment in soma and extremely low reserve mobility explains the species’ fast growth, high tolerance to starvation and high reproductive output. Hence, the reproductive strategies of both species are considerably different. Flat oysters are especially susceptible to unfavourable environmental conditions during the brooding period, while Pacific oysters’ large investment in reproduction make it well adapted to highly diverse environments. Based on the life history traits, aquaculture and restoration of O. edulis should be executed in environments with suitable and stable conditions.
Located in Library / RBINS Staff Publications 2022
Article Reference Comparing maternal genetic variation across two millennia reveals the demographic history of an ancient human population in southwest Turkey
Located in Library / RBINS Staff Publications 2016
Article Reference Comparing the results of four widely used automated bat identification software programs to identify nine bat species in coastal Western Europe
Located in Associated publications / Belgian Journal of Zoology / Bibliographic References
Article Reference Comparison of Chelex based resins in diffusive gradients in thin-film for high resolution assessment of metals
The passive sampling technique of diffusive gradients in thin-film (DGT) is widely used to determine 1D profiles (using Chelex-100 resin) and 2D images (using suspended particulate reagent-iminodiacetate resin, abbreviated as SPR-IDA resin) of metals in sediment pore waters and in oxic/anoxic soils. However, when deployed in anoxic sediments with high metal concentrations, Fe and Mn concentrations determined with the Chelex-100 resin gel were ~ 5 times higher than concentrations measured with the SPR-IDA resin gel. This discrepancy suggests that the SPR-IDA resin gel is saturated faster than the Chelex-100 resin gel. Here, we tested the adsorption capacity of the SPR-IDA resin gel and compared it to the Chelex-100 resin gel. Fe and Mn binding capacities on a SPR-IDA gel disc are less than 0.1 μmoles, which means that they are far below those on a Chelex-100 gel disc (around 3.2 μmoles), while competition with stronger binding metals such as Cu and Cd further lowers Fe and Mn capacities. This restricts the SPR-IDA resin gel to be used in contaminated marine sediments. We propose the use of a ground Chelex-100 resin, which is prepared by grinding Chelex-100 resin in a ball-mill prior to gel preparation. The capacities of Fe and Mn on a ground Chelex-100 resin gel disc are around 1.6 μmoles, more than 16 times higher than the capacity on SPR-IDA gel disc. In addition, the bead size of the ground Chelex-100 resin is small enough (~ 10 μm) to allow high resolution LA-ICP-MS imaging of Fe, Mn and trace metals in sediment pore waters as well as soils.
Located in Library / No RBINS Staff publications
Article Reference Comparison of three SeaWiFS atmospheric correction algorithms for turbid waters using AERONET-OC measurements
The use of satellites to monitor the color of the ocean requires effective removal of the atmospheric signal. This can be performed by extrapolating the aerosol optical properties in the visible from the near-infrared (NIR) spectral region assuming that the seawater is totally absorbant in this latter part of the spectrum. However, the non-negligible water-leaving radiance in the NIR which is characteristic of turbid waters may lead to an overestimate of the atmospheric radiance in the whole visible spectrum with increasing severity at shorter wavelengths. This may result in significant errors, if not complete failure, of various algorithms for the retrieval of chlorophyll-a concentration, inherent optical properties and biogeochemical parameters of surface waters. This paper presents results of an inter-comparison study of three methods that compensate for NIR water-leaving radiances and that are based on very different hypothesis: 1) the standard Sea WiFS algorithm (Stumpfet al., 2003; Bailey et al., 2010) based on a bio-optical model and an iterative process; 2) the algorithm developed by Ruddick et al. (2000) based on the spatial homogeneity of the NIR ratios of the aerosol and water-leaving radiances; and 3) the algorithm of Kuchinke et al. (2009) based on a fully coupled atmosphere-ocean spectral optimization inversion. They are compared using normalized water-leaving radiance nL(w) in the visible. The reference source for comparison is ground-based measurements from three AERONET-Ocean Color sites, one in the Adriatic Sea and two in the East Coast of USA. Based on the matchup exercise, the best overall estimates of the nL(w) are obtained with the latest SeaWiFS standard algorithm version with relative error varying from 14.97\% to 35.27\% for lambda = 490 nm and lambda = 670 nm respectively. The least accurate estimates are given by the algorithm of Ruddick, the relative errors being between 16.36\% and 42.92\% for lambda = 490 nm and lambda = 412 nm, respectively. The algorithm of Kuchinke appears to be the most accurate algorithm at 412 nm (30.02\%), 510 (15.54\%) and 670 nm (32.32\%) using its default optimization and bio-optical model coefficient settings. Similar conclusions are obtained for the aerosol optical properties (aerosol optical thickness tau(865) and the Angstrom exponent, alpha(510, 865)). Those parameters are retrieved more accurately with the SeaWiFS standard algorithm (relative error of 33\% and 54.15\% for tau(865) and alpha(510, 865)). A detailed analysis of the hypotheses of the methods is given for explaining the differences between the algorithms. The determination of the aerosol parameters is critical for the algorithm of Ruddick et al. (2000) while the bio-optical model is critical for the algorithm of Stumpf et al. (2003) utilized in the standard SeaWiFS atmospheric correction and both aerosol and bio-optical model for the coupled atmospheric-ocean algorithm of Kuchinke. The Kuchinke algorithm presents model aerosol-size distributions that differ from real aerosol-size distribution pertaining to the measurements. In conclusion, the results show that for the given atmospheric and oceanic conditions of this study, the SeaWiFS atmospheric correction algorithm is most appropriate for estimating the marine and aerosol parameters in the given turbid waters regions. (C) 2011 Elsevier Inc. All rights reserved.
Located in Library / RBINS Staff Publications
Article Reference Competition between kaolinite flocculation and stabilization in divalent cation solutions dosed with anionic polyacrylamides
Divalent cations have been reported to develop bridges between anionic polyelectrolytes and negatively-charged colloidal particles, thereby enhancing particle flocculation. However, results from this study of kaolinite suspensions dosed with various anionic polyacrylamides (PAMs) reveal that Ca2+ and Mg2+ can lead to colloid stabilization under some conditions. To explain the opposite but coexisting processes of flocculation and stabilization with divalent cations, a conceptual flocculation model with (1) particle-binding divalent cationic bridges between PAM molecules and kaolinite particles and (2) polymer-binding divalent cationic bridges between PAM molecules is proposed. The particle-binding bridges enhanced flocculation and aggregated kaolinite particles in large, easily-settleable flocs whereas the polymer-binding bridges increased steric stabilization by developing polymer layers covering the kaolinite surface. Both the particle-binding and polymer-binding divalent cationic bridges coexist in anionic PAM- and kaolinite-containing suspensions and thus induce the counteracting processes of particle flocculation and stabilization. Therefore, anionic polyelectrolytes in divalent cation-enriched aqueous solutions can sometimes lead to the stabilization of colloidal particles due to the polymer-binding divalent cationic bridges.
Located in Library / RBINS Staff Publications
Article Reference Complementarity effects drive positive diversity effects on biomass production in experimental benthic diatom biofilms
P1. Positive effects of species diversity on ecosystem functioning have often been demonstrated in 'macrobial' communities. This relation and the responsible mechanisms are far less clear for microbial communities. Most experimental studies on microorganisms have used randomly assembled communities that do not resemble natural communities. It is therefore difficult to predict the consequences of realistic, non-random diversity loss. 2. In this study, we used naturally co-occurring diatom species from intertidal mudflats to assemble communities with realistically decreasing diversity and analysed the effect of non-random species loss on biomass production. 3. Our results demonstrate a highly positive biodiversity effect on production, with mixtures outperforming the most productive component species in more than half of the combinations. These strong positive diversity effects could largely be attributed to positive complementarity effects (including both niche complementarity and facilitation), despite the occurrence of negative selection effects which partly counteracted the positive complementarity effects at higher diversities. 4. Facilitative interactions were, at least in part, responsible for the higher biomass production. For one of the species, Cylindrotheca closterium, we show its ability to significantly increase its biomass production in response to substances leaked into the culture medium by other diatom species. In these conditions, the species drastically reduced its pigment concentration, which is typical for mixotrophic growth. 5. Synthesis. We show that both species richness and identity have strong effects on the biomass production of benthic diatom biofilms and that transgressive overyielding is common in these communities. In addition, we show mechanistic evidence for facilitation which is partly responsible for enhanced production. Understanding the mechanisms by which diversity enhances the performance of ecosystems is crucial for predicting the consequences of species loss for ecosystem functioning.
Located in Library / RBINS Staff Publications
Article Reference Complementarity of LA-ICP-MS and petrography in the analysis of Neolithic pottery from the Scheldt River valley, Belgium.
Abstract This paper presents the results of laser ablation – inductively coupled plasma – mass spectrometry (LA-ICP-MS) analysis of the clay fraction in 70 Late Mesolithic and Early/Middle Neolithic pottery sherds from the Scheldt basin and 10 sampled sediments. The elemental concentration results were visualized using multivariate chemometric techniques and compared to the results of petrographic analysis of the same ceramics in order to investigate the complementarity of both approaches. In addition, the results for the pottery and sediments were compared for clay sourcing purposes. Overall, the elemental analysis was able to confirm part of the observations from the petrographic analysis. However, a large part of the ceramics clustering was driven by heterogeneity in the elemental composition that does not stem from differences in the clay source used. Furthermore, no conclusions could be drawn on the use of the sampled sediments for pottery production. Therefore, it is concluded that LA-ICP-MS analysis of the clay fraction in pottery can complement petrography, but petrographic analysis remains indispensable for clay sourcing of pottery from northern Belgium. Keywords: ceramic petrography, LA-ICP-MS, t-SNE, elemental analysis, Neolithic pottery, Belgium
Located in Library / RBINS Staff Publications 2021