Natural manganese oxides characterization represents a challenge due to the broad variety of their structures and geochemical compositions along with a frequent poor crystallinity. This characterization requires the ability to conduct both a phase separation and a phase association operation. In this paper, the Raman spectra acquired on a selection of natural manganese oxide minerals are first processed with an automated curve-fitting model called MnOx. The adjustment of convolution envelope is realized, thanks to the Levenberg–Marquardt algorithm applied on a set of randomly generated seed pseudo-Voigt curves. The application conditions of the automated curve-fitting and, in particular, the number of seed curves are investigated with regards to the risk of overfitting. The MnOx model outputs are in a second step treated by data mining techniques and in particular by unsupervised clustering methods. This data processing shows promising results in terms of phase separation when the number of clusters is equivalent to the number of phases. By contrast, the decrease of number of clusters leads to a phase association which reflects spectral affinities between phases. This result shows the existence of 6 to 7 vibrational bands in Mn oxides Raman spectra, with contrasting behaviours between clustering. Thereby, vibrational bands located in the low wave number domain (<510 cm−1) are more mobile and therefore more sensitive to structural modifications, while bands with higher wave number are less affected by structural changes. Besides these results, Raman responses collected during this study provide new refinement regarding the spectral content of some Mn oxides in particular todorokite, nsutite, and chalcophanite.
Located in
Library
/
RBINS Staff Publications 2017
Moderately diverse trace fossil assemblages occur in the Eocene Tambak Member of the Tanjung Formation, in the Asem Asem Basin on the southern coast of South Kalimantan. These assemblages are fundamental for establishing depositional models and paleoecological reconstructions for southern Kalimantan during the Eocene and contribute substantially to the otherwise poorly documented fossil record of birds in Island Southeast Asia. Extensive forest cover has precluded previous ichnological analyses in the study area. The traces discussed herein were discovered in newly exposed outcrops in the basal part of the Wahana Baratama coal mine, on the Kalimantan coast of the Java Sea. The Tambak assemblage includes both vertebrate and invertebrate trace fossils. Invertebrate traces observed in this study include Arenicolites, Cylindrichnus, Diplocraterion, Palaeophycus, Planolites, Psilonichnus, Siphonichnus, Skolithos, Thalassinoides, Taenidium, and Trichichnus. Vertebrate-derived trace fossils include nine avian footprint ichnogenera (Aquatilavipes, Archaeornithipus, Ardeipeda, Aviadactyla, cf. Avipeda, cf. Fuscinapeda, cf. Ludicharadripodiscus, and two unnamed forms). A variety of shallow, circular to cylindrical pits and horizontal, singular to paired horizontal grooves preserved in concave epirelief are interpreted as avian feeding and foraging traces. These traces likely represent the activities of small to medium-sized shorebirds and waterbirds like those of living sandpipers, plovers, cranes, egrets, and herons. The pits and grooves are interpreted as foraging traces and occur interspersed with both avian trackways and invertebrate traces. The trace fossils occur preferentially in heterolithic successions with lenticular to flaser bedding, herringbone ripple stratification, and common reactivation surfaces, indicating that the study interval was deposited in a tidally influenced setting. Avian trackways, desiccation cracks, and common rooting indicate that the succession was prone to both subaqueous inundation and periodic subaerial exposure. We infer that the Tambak mixed vertebrate-invertebrate trace fossil association occurred on channel-margin intertidal flats in a tide-influenced estuarine setting. The occurrence of a moderately diverse avian footprint and foraging trace assemblage in the Tambak Member of the Tanjung Formation illustrates that shorebirds and waterbirds have been using wetlands in what is now Kalimantan for their food resources since at least the late Eocene.
Located in
Library
/
RBINS Staff Publications 2024
Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.
Located in
Library
/
RBINS Staff Publications 2022