This study aimed to assess the influence of bees’ floral preference on cashew agronomics performances in Côte d’Ivoire. Therefore, a sampling design with a total of 40 cashew trees preferred by bees and 40 trees that were not preferred by bees was established in 4 main producing regions. In addition, bees’ foragers and agronomics performances of trees were sampled. As results, a total of 46 bee’ species with a foraging activity of 4±0.32 visits per minute were observed. Apis mellifera (60% of visits, with 2.27±0.17 of visitors per minute) followed by Meliponula bocandei (23% of visits with 0.91±0.18 of visits per minute) contributes significantly to the reproduction of cashew trees, compare to the 44 other bees’ species (17% of visits; with an activity of 0.69±0.03 of visitors per minute). The preferred trees recorded 40.54±0.57 kg of nuts per tree, with 18.39±0.48 fruits per inflorescence, including 37.12±0.4% of useful kernel per raw nut (yield ratio of 65.45±0.66 pound of useful kernel). Conversely, the non-preferred trees obtained 5.24±0.44kg of nuts per tree, with 1.7±0.21 fruits per inflorescence, including 28.69±0.65% of useful kernel per raw nut (50.6±1.15 pound of useful kernel). Hence, the foraging preference of these two Apidae significantly increased the fruiting rate (83.7±0.01%), the yields (87.08±0.0%), and the kernel rate (22.68±1.76%) in raw cashew nuts. Based in these results, we suggest the foraging preference of Apis mellifera as good indicator of high-yielding cashew plants. Moreover, we suggests combination of apicultural and meliponicultrual in cashew farming to boost the yields and farmers livelihoods.
Located in
Library
/
RBINS Staff Publications 2022
The intentional combination of two or more marine activities with the purpose of sharing space, infrastructure, resources and/or operations, referred to as multiuse, is gaining attention as a means to reduce the spatial footprint of human activities but possibly also its ecological footprint. In this study, the Spatial Cumulative Assessment of Impact Risk for Management (SCAIRM) method was adapted and applied to assess whether multi-use can reduce the ecological footprint in terms of the cumulative impacts on the marine ecosystem, by integrating multiple offshore activities in different configurations as compared to these activities separated in space, referred to as single-use. These configurations combine renewable energy, aquaculture, nature restoration and tourism activities, in different combinations. For the sake of this multi-use assessment these activities were subdivided into actions, their allocation in space and time represented in scenarios (e.g. single-use versus multi-use) which were then evaluated in terms of their ecological footprint (i.e. Impact Risk). The main finding is that the calculated Impact Risk in multi-use is often lower than that in single-use and in any case never higher. This study also shows that there is still much to be gained in terms of further reduction in Impact Risk through an optimization of the multi-use design by comparing the scenario based on actual pilots deemed more realistic (i.e. co-existence with limited synergies) with a hypothetical optimal scenario (i.e. multi-functional).
Located in
Library
/
RBINS Staff Publications 2024