Skip to content. | Skip to navigation

Personal tools

You are here: Home
3345 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Stygobitic Candonidae (Crustacea, Ostracoda) Are Potential Environmental Indicators of Groundwater Quality in Tropical West Africa
Located in Library / RBINS Staff Publications 2025
Article Reference Issid planthoppers from Bach Ma and Phong Dien in Central Vietnam: (II) Tribe Hemisphaeriini (Hemiptera: Fulgoromorpha: Issidae)
Located in Library / RBINS Staff Publications 2025
Article Reference Adulis and the transshipment of baboons during classical antiquity
Adulis, located on the Red Sea coast in present-day Eritrea, was a bustling trading centre between the first and seventh centuries CE. Several classical geographers—Agatharchides of Cnidus, Pliny the Elder, Strabo—noted the value of Adulis to Greco-Roman Egypt, particularly as an emporium for living animals, including baboons (Papio spp.). Though fragmentary, these accounts predict the Adulite origins of mummified baboons in Ptolemaic catacombs, while inviting questions on the geoprovenance of older (Late Period) baboons recovered from Gabbanat el-Qurud (‘Valley of the Monkeys’), Egypt. Dated to ca. 800–540 BCE, these animals could extend the antiquity of Egyptian–Adulite trade by as much as five centuries. Previously, Dominy et al. (2020) used stable isotope analysis to show that two New Kingdom specimens of Papio hamadryas originate from the Horn of Africa. Here, we report the complete mitochondrial genomes from a mummified baboon from Gabbanat el-Qurud and 14 museum specimens with known provenance together with published georeferenced mitochondrial sequence data. Phylogenetic assignment connects the mummified baboon to modern populations of P. hamadryas in Eritrea, Ethiopia, and eastern Sudan. This result, assuming geographical stability of phylogenetic clades, corroborates Greco-Roman historiographies by pointing toward present-day Eritrea, and by extension Adulis, as a source of baboons for Late Period Egyptians. It also establishes geographic continuity with baboons from the fabled Land of Punt (Dominy et al., 2020), giving weight to speculation that Punt and Adulis were essentially the same trading centres separated by a thousand years of history.
Located in Library / RBINS Staff Publications 2023
Article Reference An integrated study of dark earth from the alluvial valley of the Senne river (Brussels, Belgium).
The present article discusses the integration of urban geoarchaeological and archaeobotanical data of a series of Dark Earth deposits situated in the alluvial valley of the Senne River in Brussels, Belgium. Due to their homogeneous character, their interpretation is a huge challenge for archaeologists. Through a caseby-case approach, a detailed picture of the sequence of different activities and (semi-) natural events, leading to the build up of Dark Earth at each individual site has been obtained. Among the activities, agricultural practices and waste management, which are rarely archaeologically recorded in urban contexts, have been identified. Despite being situated in a valley context, none of the sites presented an excellent preservation of the organic plant remains. However, through the integration of geoarchaeological and botanical data, the taphonomical history of the botanical remains could better be understood, allowing us to document the evolution of the environment surrounding the sites. Additionally, it has been demonstrated that the botanical study of Dark Earth units can also provide valuable information on vegetal consumption, in particular fruits. On a broader scale, this integrated geoarchaeologial and archaeobotanical study sheds some light on the process of urbanisation of the Senne alluvial valley between the 11the12th and the 16th century AD.
Located in Library / RBINS Staff Publications 2017
Article Reference Deciphering the influence of evolutionary legacy and functional constraints on the patella: an example in modern rhinoceroses amongst perissodactyls
In mammals, the patella is the biggest sesamoid bone of the skeleton and is of crucial importance in posture and locomotion, ensuring the role of a pulley for leg extensors while protecting and stabilizing the knee joint. Despite its central biomechanical role, the relation between the shape of the patella and functional factors, such as body mass or locomotor habit, in the light of evolutionary legacy are poorly known. Here, we propose a morphofunctional investigation of the shape variation of the patella among modern rhinoceroses and more generally among perissodactyls, this order of ungulates displaying a broad range of body plan, body mass and locomotor habits, to understand how the shape of this sesamoid bone varies between species and relatively to these functional factors. Our investigation, relying on three dimensional geometric morphometrics and comparative analyses, reveals that, within Rhinocerotidae and between the three perissodactyl families, the shape of the patella strongly follows the phylogenetic affinities rather than variations in body mass. The patellar shape is more conservative than initially expected both within and between rhinoceroses, equids and tapirs. The development of a medial angle, engendering a strong mediolateral asymmetry of the patella, appears convergent in rhinoceroses and equids, while tapirs retain a symmetric bone close to the plesiomorphic condition of the order. This asymmetric patella is likely associated with the presence of a “knee locking” mechanism in both equids and rhinos. The emergence of this condition may be related to a shared locomotor habit (transverse gallop) in both groups. Our investigation underlines unexcepted evolutionary constraints on the shape of a sesamoid bone usually considered as mostly driven by functional factors.
Located in Library / RBINS Staff Publications 2024 OA
Article Reference Reduced contribution of sulfur to the mass extinction associated with the Chicxulub impact event
The Chicxulub asteroid impact event at the Cretaceous-Paleogene (K-Pg) boundary ˊ66 Myr ago is widely considered responsible for the mass extinction event leading to the demise of the non-avian dinosaurs. Short-term cooling due to massive release of climate-active agents is hypothesized to have been crucial, with S-bearing gases originating from the target rock vaporization considered an important driving force. Yet, the magnitude of the S release remains poorly constrained. Here we empirically estimate the amount of impact-released S relying on the concentration of S and its isotopic composition within the impact structure and a set of terrestrial K-Pg boundary ejecta sites. The average value of 67 ± 39 Gt obtained is ˊ5-fold lower than previous numerical estimates. The lower mass of S-released may indicate a less prominent role for S emission leading to a milder impact winter with key implications for species survival during the first years following the impact.
Located in Library / RBINS Staff Publications 2025 OA
Article Reference Making sense of variation in sclerochronological stable isotope profiles of mollusks and fish otoliths from the early Eocene southern North Sea Basin
Stable isotope sclerochemistry of biogenic carbonate is frequently used for the reconstruction of paleotemperature and seasonality. Yet, few studies have compared intra-and inter-taxon isotope variability and variation within a single depositional environment. We measured seasonal changes in δ18O and δ13C compositions in multiple specimens of two carditid bivalve species, a turritelline gastropod species, and two species of otoliths from demersal fish, from two early Eocene (latest Ypresian, 49.2 Ma) coquinas in the inner neritic Aalter Formation, located in the Belgian part of the southern North Sea Basin (paleolatitude ∼41°N). Results demonstrate considerable variation among taxa in the mean, amplitude, and skewness of δ18O and δ13C values from sequentially sampled growth series. We attribute this variation to factors including differences in seasonal growth over ontogeny, mixing of depositional settings by sediment transport, differences between sedentary and mobile organisms, and differences in longevity of the taxa in question. Growth cessation during winters in turritellines and fishes in particular lead to an incomplete representation of the seasonal cycle in their growth increments, in comparison to carditid bivalves. Ophidiid fish otolith isotope records appear to reflect environmental conditions over a wider range of habitats and environments, and we infer this is due to a combination of sedimentary transport, as these are small structures, and postmortem transport by free-swimming predatory fish. Our study highlights the potential variability encompassed by taxa in the shallow marine realm even when they are found in the same deposits. While this has significant implications for seasonality reconstructions based on conventional isotope profiles, we show that careful study of the ecology and ontogeny of multiple taxa and specimens within a death assemblage can reveal sources of variation and yield a close approximation of conditions in the setting of interest.
Located in Library / RBINS Staff Publications 2025
Article Reference Deep marine records of Deccan Trap volcanism before the Cretaceous–Paleogene (K–Pg) mass extinction
The Cretaceous–Paleogene boundary is marked by a large impact and coeval mass extinction event that occurred 66 m.y. ago. Contemporaneous emplacement of the volcanic Deccan Traps also affected global climate before, during, and after the mass extinction. Many questions remain about the timing and eruption rates of Deccan volcanism, its precise forcing of climatic changes, and its signature in the marine geochemical sedimentary proxy record. Here, we compile new and existing mercury (Hg) concentration and osmium isotope (187Os/188Os) records for various stratigraphic sections worldwide. Both geochemical proxies have been suggested to reflect past variations in Deccan volcanic activity. New data from deep marine pelagic carbonate records are compared to contemporaneous records from shallower marine sites correlated through high-resolution cyclostratigraphic age models. The robustness of the proxy records is evaluated on a common timeline and compared to two different Deccan eruption history scenarios. Results show that the global 187Os/188Os signal is clearly reproducible, while the global Hg record does not form a consistent pattern. Moreover, the deep marine sections investigated do not record clear variations in the Hg cycle, particularly in the latest Cretaceous, prior to the extinction event. A detailed reevaluation of the precise depth of the redistribution of impactor-sourced platinum group elements does not exclude the possibility of a minor drop in 187Os/188Os corresponding with a pulse of Deccan volcanism ˊ50,000 years before the Cretaceous–Paleogene boundary. Simple Os isotope mass balance modeling indicates that the latest Cretaceous was marked by significant levels of basalt weathering. CO2 sequestration during this weathering likely overwhelmed the emission of Deccan volatiles, thereby contributing to the end of the late Maastrichtian warming.
Located in Library / RBINS Staff Publications 2025
Article Reference Flint formation and astronomical pacing in the Maastrichtian chalk of northwestern Europe
In Upper Cretaceous chalk sequences, the widespread occurrence of flint, as well as a possible astronomical pacing of their often-encountered rhythmic distribution, remains poorly constrained. The Campanian-Maastrichtian Hallembaye chalk succession (Maastrichtian type area, northeast Belgium) is characterized by the gradual evolution from no flint bands at its base to the regular presence of well-developed flint bands at its top. Here, the Hallembaye section is investigated to gain more insights into the underlying processes behind flint inception. A relationship is found between the amount of detrital material (i.e., clays) present in the chalk and flints, and the extent of silicification and flint development. Several astronomical cycles are identified within the succession using both a lithology-based flint proxy and high-resolution μXRF-based element data from chalk samples. A combined imprint of precession and obliquity is documented in the chalk Ti/Al profile. The flint bands display a predominant obliquity imprint with an increasing contribution of precession and eccentricity up-section. Two consistent stratigraphically integrated astronomical age models are preferred. The first model is a floating age model that is based on the minimal tuning of the short obliquity cycle in the Ti/Al signal. The second model is a numerical age model that is based on flint occurrences, tuned to a combined tuning target consisting of both the inclination and long eccentricity metronomes. Temporal variations in the hydrological cycle and consequent changes in eolian, fluvial and dissolved Si input to the European Basin appear astronomically controlled. In addition, flint nodules and bands are paced by Milankovitch timescales, reflecting astronomical control on the Si cycle and paleoenvironmental conditions governing conditions favorable towards flint formation.
Located in Library / RBINS Staff Publications 2025
Article Reference A European monsoon-like climate in a warmhouse world
The middle Eocene warmhouse period (45 million years ago) featured atmospheric carbon dioxide concentrations equivalent to those projected under high future emission scenarios. Seasonal- to weather timescale climate reconstructions from this period can provide critical insight into the impact of Anthropogenic warming on intra-annual variability in temperature and precipitation. Here, we combine daily-scale reconstructions of the evolution of temperature and the water cycle in western Europe based on stable oxygen and clumped isotope analyses on the fastest-growing gastropod known in the fossil record: Campanile giganteum. Our dataset shows that the middle Eocene of western Europe featured monsoon-like conditions, with seawater temperatures of ˊ24 °C during mild and wet winters, 30 °C during hot and dry spring and autumn seasons, and ˊ28 °C during warm and comparatively wet summers. Coupled climate model simulations using the Community Earth System Model indicate these seasonal variations in temperature and precipitation were driven by shifting atmospheric and oceanic circulation regimes over Western Europe, with winds from different directions bringing distinct waters to the region and minimal wind during spring reducing cooling through diminished latent heat flux. Our results highlight that Europe may experience wetter summers with more frequent extreme rainfall events under future high emissions scenarios.
Located in Library / RBINS Staff Publications 2025 OA