Natural History institutes hold an immense number of specimens and artefacts. For years these collections were not accessible online, remaining inaccessible to researchers from far away and hidden from the general public. Large digitisation projects and cross-institutional agreements aim to bring their collections into the digital era, such as the SYNTHESYS+ project and the Distributed System of Scientific Collections (DiSSCo) Research Infrastructure. As specimens are 3D physical objects with different characteristics many techniques are available to 3D digitise them. For inexperienced users this can be quite overwhelming. Which techniques are already well tested in other institutions and are suitable for a specific specimen or collection? To investigate this, we have set up a dichotomous identification key for digitisation techniques: DIGIT-KEY, (https://digit.naturalheritage.be/digit-key). For each technique, examples used in SYNTHESYS+ Institutions are visualised and training manuals provided. All information can be easily updated and representatives can be contacted if necessary to request more information about a certain technique. This key can be helpful to achieve comparable results across institutions when digitising collections on demand in future DiSSCo research initiatives coordinated through the European Loans and Visits System (ELViS) for Virtual and Transnational Access. A correction has been published: Brecko J., Mathys A., Chatzinikolaou E., Keklikoglou K., Blettery J., Green L., Musson A., Paton A., Phillips S., Bastir M., Wiltschke K., Rainer H., Kroh A., Haston E. & Semal P. 2025. DIGIT-KEY: an aid towards uniform 2D+ and 3D digitisation techniques within natural history collections — Corrigendum. European Journal of Taxonomy 981: 306–307. https://doi.org/10.5852/ejt.2025.981.2841
Located in
Library
/
RBINS Staff Publications 2025
Climate change not only alters ocean physics and chemistry but also affects the biota. Larval dispersal patterns from spawning to nursery grounds and larval survival are driven by hydrodynamic processes and shaped by (a)biotic environmental factors. Therefore, it is important to understand the impacts of increased temperature rise and changes in wind speed and direction on larval drift and survival. We apply a particle-tracking model coupled to a 3D-hydrodynamic model of the English Channel and the North Sea to study the dispersal dynamics of the exploited flatfish (common) sole (Solea solea). We first assess model robustness and interannual variability of larval transport over the period 1995-2011. Then, using a subset of representative years (2003-2011), we investigate the impact of climate change on larval dispersal, connectivity patterns and recruitment at the nursery grounds. The impacts of five scenarios inspired by the 2040 projections of the Intergovernmental Panel on Climate Change are discussed and compared with interannual variability. The results suggest that 33% of the year-to-year recruitment variability is explained at a regional scale and that a 9-year period is sufficient to capture interannual variability in dispersal dynamics. In the scenario involving a temperature increase, early spawning and a wind change, the model predicts that (i) dispersal distance (+70%) and pelagic larval duration (+22%) will increase in response to the reduced temperature (–9%) experienced by early hatched larvae, (ii) larval recruitment at the nursery grounds will increase in some areas (36%) and decrease in others (-58%), and (iii) connectivity will show contrasting changes between areas. At the regional scale, our model predicts considerable changes in larval recruitment (+9%) and connectivity (retention -4% and seeding +37%) due to global change. All of these factors affect the distribution and productivity of sole and therefore the functioning of the demersal ecosystem and fisheries management.
Located in
Library
/
RBINS Staff Publications 2018