Skip to content. | Skip to navigation

Personal tools

You are here: Home
311 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference The oldest Ordovician rugose and tabulate corals from the Avalonian Brabant Massif (Belgium)
Located in Library / RBINS Staff Publications 2025
Article Reference The Pliocene–Pleistocene transition in the subsurface of the Dutch-Belgian border region: insights from borehole Huijbergen
Located in Library / RBINS Staff Publications 2023
Article Reference The Population History of Domestic Sheep Revealed by Paleogenomes
Sheep was one of the first domesticated animals in Neolithic West Eurasia. The zooarchaeological record suggests that domestication first took place in Southwest Asia, although much remains unresolved about the precise location(s) and timing(s) of earliest domestication, or the post-domestication history of sheep. Here, we present 24 new partial sheep paleogenomes, including a 13,000-year-old Epipaleolithic Central Anatolian wild sheep, as well as 14 domestic sheep from Neolithic Anatolia, two from Neolithic Iran, two from Neolithic Iberia, three from Neolithic France, and one each from Late Neolithic/Bronze Age Baltic and South Russia, in addition to five present-day Central Anatolian Mouflons and two present-day Cyprian Mouflons. We find that Neolithic European, as well as domestic sheep breeds, are genetically closer to the Anatolian Epipaleolithic sheep and the present-day Anatolian and Cyprian Mouflon than to the Iranian Mouflon. This supports a Central Anatolian source for domestication, presenting strong evidence for a domestication event in SW Asia outside the Fertile Crescent, although we cannot rule out multiple domestication events also within the Neolithic Fertile Crescent. We further find evidence for multiple admixture and replacement events, including one that parallels the Pontic Steppe-related ancestry expansion in Europe, as well as a post-Bronze Age event that appears to have further spread Asia-related alleles across global sheep breeds. Our findings mark the dynamism of past domestic sheep populations in their potential for dispersal and admixture, sometimes being paralleled by their shepherds and in other cases not.
Located in Library / RBINS Staff Publications 2023
Article Reference The record of cricetid rodents across the Eocene–Oligocene transition in Transylvania, Romania: implications for the “Grande Coupure” at European scale
A number of localities in Transylvania (Romania) have yielded vertebrate microfossil remains. Two localities have been stratigraphically and biochronologically dated to the late Eocene: i.e., Treznea and Bociu. The remaining three localities are dated to the early Oligocene: Mera, Cetățuie, and Suceag. The study of cricetid rodents corroborates the presence of this family in Eastern Europe during the late Eocene, as evidenced by the species Witenia sp., Bustrania cf. B. dissimile , and Eocricetodon cf. Eo. meridionalis. The cricetids identified in the sites of the early Oligocene age show a complete turnover and a notable increase in species richness following the Eocene/Oligocene boundary, with: Eucricetodon aff. Eu. huerzeleri, Tenuicricetodon arcemis gen. et sp. nov., Pseudocricetodon cf. Ps. montalbanensis, Paracricetodon cf. Pa. walgeri, Paracricetodon kavakderensis, Paracricetodon aff. Pa. stojonovici, and Paracricetodon wentgesi. In the context of the wider biogeographic history of Europe, these new discoveries indicate that Cricetidae arrived in Europe during at least two successive migrations from Asia in the late Eocene and earliest Oligocene. These migrations may have occurred via two different migration pathways through the north and south of Europe. In a second phase, Cricetidae arriving by the northern passway spread throughout Europe, whereas Cricetidae that arrived by the southern passway remained restricted to the central and southeastern Europe. The observations made on the Cricetidae allow for the proposal of a new, more general, scenario for the Eocene–Oligocene transition on a European scale, which is more complex than the “Grande Coupure” sensu stricto as initially proposed by Stehlin in 1909.
Located in Library / RBINS Staff Publications 2025 OA
Article Reference The relationship between head shape, head musculature and bite force in caecilians (Amphibia: Gymnophiona)
Caecilians are enigmatic limbless amphibians that, with a few exceptions, all have an at least partly burrowing lifestyle. Although it has been suggested that caecilian evolution resulted in sturdy and compact skulls as an adaptation to their head-first burrowing habits, no relationship between skull shape and burrowing performance has been demonstrated to date. However, the unique dual jaw-closing mechanism and the osteological variability of their temporal region suggest a potential relationship between skull shape and feeding mechanics. Here, we explored the relationships between skull shape, head musculature and in vivo bite forces. Although there is a correlation between bite force and external head shape, no relationship between bite force and skull shape could be detected. Whereas our data suggest that muscles are the principal drivers of variation in bite force, the shape of the skull is constrained by factors other than demands for bite force generation. However, a strong covariation between the cranium and mandible exists. Moreover, both cranium and mandible shape covary with jaw muscle architecture. Caecilians show a gradient between species with a long retroarticular process associated with a large and pennate-fibered m. interhyoideus posterior and species with a short process but long and parallel-fibered jaw adductors. Our results demonstrate the complexity of the relationship between form and function of this jaw system. Further studies that focus on factors such as gape distance or jaw velocity will be needed in order to fully understand the evolution of feeding mechanics in caecilians.
Located in Library / RBINS Staff Publications 2021
Article Reference Tiny Killers: First Record of Rhabdocoel Flatworms Feeding on Water Flea Embryos
Located in Library / RBINS Staff Publications 2025
Inproceedings Reference Towards a Lithotectonic Framework for Belgium
Nearly every geological subdiscipline relies to some degree on regional geological knowledge. In the introductory section of most geological papers it is standard practice to provide regional geological background information. Stratigraphic terminology is often well defined while other disciplinary concepts rely, at least to some degree, on generally agreed definitions or hierarchical schemes, such as paleontological, structural or magmatic terminology. This, however, is much less the case for the regional geological building blocks. Their names are usually composed of a combination of a geographical locality and a geological term. A few examples from Belgium are Brabant Massif, Campine Basin, Stavelot-Venn Inlier, and Malmedy Graben. Most of these have in common that, although their importance is well recognised, their definitions are vague and sometimes even conflicting, in that their meaning may differ between contexts and authors. Even if their meaning has drifted or become less exact, as a result of their frequent historical use, they commonly remain in use today. This issue is not exclusive to Belgium, but seems to be an altogether historic and worldwide phenomenon. Recently within Europe there is a growing awareness of this issue, resulting in important but rather isolated efforts to better structure and define regional information (Hintersberger et al. 2017; Németh 2021; Le Bayon et al. 2022) which have been brought together through pan-European cooperation (GSEU – Horizon Europe 101075609). The central element that seems to encompass most geologic features, is the lithotectonic unit (a distinct unit based on its partly separate geological history; URI: http://inspire.ec.europa.eu/codelist/GeologicUnitTypeValue/lithotectonicUnit). Grabens, basins and inliers are examples of lithotectonic units. In order to define and describe these units more accurately, lithotectonic limits are introduced. These are planar features, such as faults and unconformities, that correspond to the geologic events that formed the lithotectonic unit (Piessens et al. 2024). All information is organised and linked in vocabularies (thesauri) that together not only adequately define each concept, but also determine the relations between them, placing them in space and geological time (Plašienka 1999). This outlines the core methodology, around which 2D and 3D multi-scale visualisations are built, annotations can be added, existing ontologies can be linked (such as the ICS Geological Time Scale Ontology; Cox and Richard, 2005) and newly developed extensions such as the Modified Wilson Cycle (Németh 2021). As such, the work at Belgian level is closely linked to the ongoing international developments. Making use of the ongoing developments at European level, Belgium was the first country to set up a lithotectonic working group that became operational in 2023. Its first goal is to provide a lithotectonic framework that describes a starting set of main geological units and limits in Belgium, according to emerging European standards (the work at European level is linked to the implementation of INSPIRE and 195 is in communication with the GeoSciML community), by the end of 2024. The working group meets approximately every 2 months, and organisationally resides under the National Commission for Stratigraphy in Belgium. The working group will soon be looking for additional experts (junior and senior) in its continuing effort to identify and define broad superstructures, detail the regional geology to the more local level, to tackle new types of lithotectonic elements, or better address parts of geological history. Potential candidates are encouraged to contact one of the authors or the NCS secretariat. Cox SJD, Richard SM (2005) A formal model for the geologic time scale and global stratotype section and point, compatible with geospatial information transfer standards. Geosphere 1:119. https://doi.org/10.1130/GES00022.1 Hintersberger E, Iglseder C, Schuster R, Huet B (2017) The new database “Tectonic Boundaries” at the Geological Survey of Austria. Jahrbuch der geologischen Bundesanstalt 157:195–207 Le Bayon B, Padel M, Baudin T, et al (2022) The geological-event reference system, a step towards geological data harmonization. BSGF - Earth Sci Bull 193:18. https://doi.org/10.1051/bsgf/2022017 Németh Z (2021) Lithotectonic units of the Western Carpathians: Suggestion of simple methodology for lithotectonic units defining, applicable for orogenic belts world-wide. Mineralia Slovaca 2:81–90 Piessens K, Walstra J, Willems A, Barros R (2024) Old concepts in a new semantic perspective: introducing a geotemporal approach to conceptual definitions in geology. Life Sciences Plašienka D (1999) Definition and correlation of tectonic units with a special reference to some Central Western Carpathian examples. Mineralia Slovaca 31:3–16
Located in Library / RBINS Staff Publications 2024
Article Reference Towards an integrative revision of Haplotaxidae (Annelida: Clitellata)
Located in Library / RBINS Staff Publications 2024
Article Reference Toxicodryas vexator Greenbaum, Allen, Vaughan, Pauwels, Wallach, Kusamba, Muninga, Mwenebatu, Mali, Badjedjea, Penner, Rödel, Rivera, Sterkhova, Johnson, Tapondjou and Brown, 2021. Eastern Black-and-Yellow Tree Snake. Diet.
We report a case of predation by an adult Eastern Black-and-Yellow Tree Snake Toxicodryas vexator (Serpentes : Colubridae) on a juvenile Lord Derby's Scaly-tailed Squirrel Anomalurus derbianus (Rodentia : Anomaluridae) in Yangambi, Tshopo Province, Democratic Republic of the Congo. This is the first documented interaction between these two species.
Located in Library / RBINS Staff Publications 2022
Article Reference Turkish Hybotidae (Diptera: Empidoidea): description of six new species with additional data
Located in Library / RBINS Staff Publications 2025