Skip to content. | Skip to navigation

Personal tools

You are here: Home
2181 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Inproceedings Reference Geological evidence for Holocene earthquakes and tsunamis along the Nankai-Suruga Trough, Japan
Located in Library / RBINS Staff Publications 2016
Inproceedings Reference Geological provenance of the Nehalennia votive altars from Colijnsplaat (province of Zeeland, The Netherlands): preliminary results
Located in Library / RBINS Staff Publications 2016
Proceedings Reference Geological record and sedimentology of the Palaeozoic oolitic ironstone deposits in Western Europe. Spatial relationships with the Linienbandkeramik settlements (LBK) in Belgium.
Located in Library / RBINS Staff Publications
Techreport Reference Geological resource management of the future : Drilling down the possibilities. Poster presentation 2nd Deep Water Circulation Congress : The contourite Log-book, Gent, Belgium, 10 - 12/09/2014.
Located in Library / RBINS Staff Publications
Article Reference Géométrie et morphométrie des côtes : de Kebara 2 à l’humain moderne
Introduction Les côtes sont des os plats dotés d’une corticale fine rendant ces structures fragiles. En archéologie, les vestiges costaux retrouvés sont ainsi souvent des fragments plutôt que des côtes complètes. Quelques rares échantillons de Néandertaliens sont disponibles, cependant une exception existe, le squelette de Kebara 2 [1] comportant l’ensemble des côtes ainsi que la majorité des éléments vertébraux. Cette étude apporte un complément à l’analyse des paramètres géométriques et morphométriques des côtes de l’humain moderne et de Kebara 2. Méthode Une procédure de calcul automatisée a été développée afin de pouvoir extraire les caractéristiques géométriques et morphométriques tridimensionnelles des côtes à partir d’acquisitions tomodensitométriques et de reconstructions obtenues après segmentation. Divers paramètres tels, la longueur de l’arc costal, longueur de la corde, la plus grande largeur, la surface de section le long du corps, la circonférence, les courbures de torsion, d’enroulement et selon les bords ont été mesurés sur les reconstructions 3D de Kebara 2 [2] ainsi que sur un échantillon de 14 sujets humains modernes (adultes sains, 7 hommes/7 femmes) pour les étages costaux 1 à 9. Résultats L’ensemble des paramètres mesurés et notamment l’angle de torsion ou la courbure selon les bords sont sujets à une variabilité importante chez l’humain moderne. Les résultats obtenus à partir des reconstructions des côtes de Kebara 2 sont similaires à ceux mesurés chez les humains modernes pour la majorité des paramètres. Conclusion Cette étude contribue au débat concernant les dimensions thoraciques des Néandertaliens et leurs plausibles implications physiologiques [3]. Plusieurs travaux ont statué en faveur d’une différence majeure entre le thorax de Néandertalien et l’humain moderne. Malgré quelques variations aux étages inférieurs, les résultats de cette étude semblent démontrer que la géométrie et morphométrie des côtes reconstruites de Kebara 2 se situe dans les limites de l’humain moderne.
Located in Library / RBINS Staff Publications
Inproceedings Reference Geomorphological mapping of the Belgian seabed and its submerged landscapes
Low- and high-resolution Digital Terrain Models (DTMs) are available as interoperable gridded data layers and data products. These bathymetry data, together with increasing availability of various terrain analysis tools, give new impetus to a more uniform geomorphological mapping of the marine realm. To test approaches in sandy shelf areas, a multi-scale analysis was already performed on bathymetric data from the Belgian part of the North Sea using the Benthic Terrain Modeler (BTM) in ArcGIS and other GIS-related raster tools for analysing the topography of the seabed. Geomorphological features present on the Belgian Continental Shelf are sandbanks and crests, valleys and depressions, and sandwave fields. Recently, a derivative of the digital bathymetry model was constructed based on in-depth processing and re-interpretations of sediment cores in conjunction with extensive seismic records, resulting in a depth-converted structure map (DCSM) of the Top-Paleogene surface at high-resolution scale of 1:250 000 (De Clercq et al., 2016). Similar GIS analyses have now been conducted on the appearing submerged landscapes from 120,000 to 100,000 years ago allowing revealing planation surfaces, escarpements, slope breaks, paleo-valleys and -ridges in an automated way. Both resulting geomorphological mapping products contribute to EMODnet-Geology’s work packages on geomorphology and submerged landscapes. De Clercq, M., Chademenos, V., Van Lancker, V., & Missiaen, T. (2016). A high-resolution DEM for the Top-Palaeogene surface of the Belgian Continental Shelf. Journal of Maps 12(5), 1047-1054.
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Geophysical well log correlations in the Quaternary deposits of the Campine area, northern Belgium
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Geothermal Energy use, Country Update for Belgium
Located in Library / RBINS Staff Publications 2016
Unpublished Reference Geothermal energy: learning to live with geological uncertainty
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Geothermal resources assessment methodology in Wallonia (Belgium).
The Geological Survey of Belgium (GSB) is involved in geothermal resources assessment at European scale with GeoElec and Thermomap (very shallow) projects and at regional scale with the geothermal plate-form of Wallonia. The GSB has recently completed a first evaluation of geothermal potential of the Walloon region for medium to high enthalpy (300-6000 m). In 2008, the U.S Geological Survey (USGS) has conducted an updated assessment of geothermal resources in the United States. The volume method was the primary scheme applied to identified geothermal systems in which the recoverable heat is estimated from the thermal energy available in a reservoir. In some European countries, the temperature data available generally allow to produce a heat flow map at great depth. The subsurface temperature measurements of Belgium were first compiled by Legrand in 1975 and updated by Vandenberghe & Fock in 1989. The temperature values from the coal and hydrocarbon exploration wells are significantly spread over the reservoirs. The geothermal gradients are strongly influenced by groundwater circulation. The fold and thrust belt context of the subsoil in Wallonia makes geothermal gradient interpretation, reservoir temperatures and reservoir volume difficult to assess. The first geothermal reservoirs identified at 1 kilometer depth were mapped by Berckmans & Vandenberghe (1998). The northern Campine and Anvers regions, the Hainaut basin, and the corridor between Liège and Visé were considered as potential areas. The waloon geothermal plate-form project consisted mainly in preparing and collecting deep geological structure and geothermal resource of the underground data. Geophysical, geological, temperatures and hydrogeological data required some up to date re-interpretation to match the current model knownledge of the deep geological underground of Wallonia. More details were given by a focused study on Liege area with a 3D model realized by Liege University and a chemical geothermometer analyse conducted by GSB. Two maps of geothermal energy interests were produced: one for low to medium depth (300-3000 m), and another one for great depth (3000-6000 m). They mainly represent cartography of the Devono-Carboniferous limestones and Lower Devonian quartzites for two geothermal horizons. Simplified versions of the two maps destinated to the public and policy makers were constructed according to the USGS geothermal resource and reserve terminology, illustrated in the Mc Kelvey diagram (1980). Berckmans A., Vandenberghe N., 1998. Use and potential of geothermal energy in Belgium. Geothermics 27: 235 - 242. Legrand, R. (1975). Jalons Géothermiques. Mémoire Explicatif Cartes Géologique, Mines Belgique, 16 :46 pp. Mc Kelvey (1980). US Geologcal Survey. Principles of a Resource/Reserve classification for Minerals, Circular 831. Vandenberghe N., Fock W. Temperature data in the subsurface of Belgium, 1989. Temperature data in the susbsurface of Belgium. Tectonophysics 164, 237-250.
Located in Library / RBINS Staff Publications