Skip to content. | Skip to navigation

Personal tools

You are here: Home
2181 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Eichhornia crassipes (Mart.) Solms como potencial dispersor de ovos de dormência de Ostracoda (Crustacea)
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Electric and passive seismic geophysical survey in a protected cave environment: the Bruniquel cave (France).
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Electronique et géosciences: développement de capteurs environnementaux adaptés à la haute atmosphère et aux milieux souterrains.
Les technologies liées à l’automatisation et au traitement numérique du signal d’instruments de mesure se sont largement démocratisées ces dernières années. C’est en partie dû à la prolifération des plateformes d’échange en électronique et aux progrès constants de miniaturisation et d’intégration des circuits. De plus, l’accès aisé à des catalogues de composants en ligne et à des services de prototypage de carte électroniques permettent aujourd’hui à des scientifiques, non professionnels en électronique, de concevoir et fabriquer eux-mêmes des équipements de mesure adaptés aux milieux naturels qu’ils étudient. A titre d’exemple, un petit capteur de température autonome, le « Niphargus » a été développé à l’Institut des Sciences naturelles de Belgique (Service géologique de Belgique, Direction Terre et Histoire de la Vie) dans le but de surveiller l’évolution en température de milieux naturels (grottes, sols et rivières). L'instrument est basé sur un capteur de température à diode de silicium monolithique, cette technologie allie la stabilité de mesure d’un thermomètre de laboratoire à résistance de platine avec la sensibilité des thermistances habituellement intégrées aux instruments miniaturisés. Le Niphargus est conçu pour être produit à faible coût, est capable d’enregistrer la température avec une résolution inférieure à 0.01°C entre -50°C et +125°C, dispose d’une autonomie de plusieurs années, et peut-être calibré facilement à ±0.1°C entre 0 et 30°C. Ils ont été notamment déployés dans plusieurs grottes belges et étrangères. Dans le cas de la grotte de Han-sur-Lesse (Belgique), par exemple, des enregistrements effectués au printemps 2013 ont permis détecter un cycle diurne de variation de la température de l’air de la salle du Dôme d’une amplitude de 0,005°C. Le « Stratochip » est un autre exemple de développement basé sur l’intégration de technologies récentes dérivées des aéronefs civils autonomes (microcontrôleur puissant, centrale inertielle et récepteur GNSS miniatures, transmissions de données longue portée). Cet équipement permet l’observation de la terre et de l’atmosphère à des altitudes allant de 1.000 à 32.000 mètres, et sur des distances de plusieurs dizaines de kilomètres. Son principe de fonctionnement est simple et innovant : la sonde d’observation transportée par deux ballons gonflés à l’hélium. À une altitude prédéterminée, un des ballons est largué, stabilisant rapidement le taux de montée de l’équipement et permettant un vol en plateau au-dessus d’une zone prédéfinie. Le système peut ensuite se détacher du deuxième ballon et atterrir au moyen d’un parachute. Le profil de vol, les territoires survolés et la zone d’atterrissage peuvent être calculés de façon très précises avant et pendant le vol grâce aux modèles de prédiction de directions et vitesses des vents (données NOAA), affinés par les mesures effectuées en temps réel par la sonde. Cet équipement a notamment été utilisé dans la cartographie d’un plateau karstique de la Sierra Arana (Andalousie, Espagne), et a produit une mosaïque d’images ortho-rectifiées et un modèle d’élévation du terrain sur une surface de plus 200km² avec une résolution d’1 mètre par pixel.
Located in Library / RBINS Staff Publications
Proceedings Reference Elementen van de populatiedynamiek van de Oehoe (Bubo bubo) in de Ardennen.
Located in Library / RBINS Staff Publications
Inproceedings Reference Elucidation of an invasive slug species complex in California with comments on the source location of introductions
Located in Library / RBINS Staff Publications
Unpublished Reference EMODnet Data Ingestion Portal Project - WP4.3: Promotion activities
Located in Library / RBINS Staff Publications 2017
Unpublished Reference EMODnet Data Ingestion Portal Project - WP4.1: Identification of potential data sources
Located in Library / RBINS Staff Publications 2017
Inproceedings Reference EMODnet Data Ingestion: ‘Wake up your data’
The ‘EMODnet Ingestion and safe-keeping of marine data’ project, started mid-2016, seeks to identify and reach out to organisations from research, public, and private sectors who are holding marine datasets and who are not yet connected and contributing to the existing marine data management infrastructures which are driving EMODnet. Those potential data providers should be motivated and supported to release their datasets for safekeeping and subsequent freely distribution and publication through EMODnet. The EMODnet Data Ingestion portal facilitates submission of their sleeping marine datasets for further processing, Open Data publishing and contributing to applications for society. The activities are undertaken by a large European network that is geographically anchored in the countries bordering all European marine basins, and covers all EMODnet data themes. The EMODnet Data Ingestion members are national and regional marine and oceanographic data repositories and data management experts. The coordinators of the EMODnet thematic portals are also part of this new initiative. Moreover the data centres work together on pan-European and international scales in organisations such as IODE, ICES, EuroGeoSurveys, EuroGOOS, and IHO, and for pan-European marine data management infrastructures such as SeaDataCloud, EurOBIS and EGDI. The latter are feeding into several EMODnet thematic portals. The emphasis of activities in the first year has been put towards developing the EMODnet Data Ingestion portal and its services for ingesting and publishing data sets, developing the pathways for processing and elaborating of data submissions, laying a basis for promotion and marketing activities, and making an initial inventory of potential data sources and their providers. The EMODnet Data Ingestion portal been launched early February 2017. It encourages data providers to share marine data, gives marine data management guidance information, and provides a range of services such as: ■ submission service for easy ingestion of marine data packages ■ view submissions service to oversee submitted data sets ‘as is’ ■ data wanted service to post requests for specific data types Submission forms with data packages are assigned to qualified data centres depending on the country of the data provider and the type of EMODnet theme. This group includes not only the EMODnet Ingestion consortium but also the groups of data centres who are involved in each of the EMODnet Thematic portals. A distinction is made between 2 phases in the life cycle of a data submission: ■ Phase I: from submission to publishing of the submitted datasets package ‘as is’ ■ Phase II: further elaboration of the data sets and integration (of subsets) in national, European and EMODnet thematic portals. This split allows to publish already in an early stage the original data package with high quality metadata. For operational oceanography a close cooperation takes place with EMODnet Physics. This aims at identifying and arranging inclusion of additional stations for Near Real Time (NRT) data exchange. The Data Ingestion portal explains how the NRT exchange is organised with EuroGOOS – Copernicus and guidance how to connect in practice. Furthermore a Sensor Web Enablement (SWE) pilot is set-up for Real Time data exchange. A client service to locate stations and to retrieve data streams in a time series viewer is hosted at the EMODnet Physics portal and ‘advertised’ at the EMODnet Data Ingestion portal. Promotion and outreach activities are equally important as technical developments. In the first year it has focused on establishing cooperation and synergy within the EMODnet community. A portfolio of promotional items has been developed, such as leaflets, posters, presentations, stickers, and a wonderful animation. These are part of the promotion and marketing strategy that was designed to reach out to potential data providers. In the second year this plan has been put into motion on full scale for a wider outreach and marketing to potential data providers in government, science and industry. This has so far resulted in many submissions and also in development of special use cases, such as for monitoring data from offshore renewable energy projects or minting DOIs for research data to support data citing for data submitters.
Located in Library / RBINS Staff Publications 2018
Inproceedings Reference Enhanced rock weathering: the overlooked hydrodynamic trap
Enhanced rock weathering (ERW) is a technique proposed to remove large amounts of CO2 from the atmosphere (i.e. a negative emission technology) in which finely fragmented silicate rocks such as basalts (ground basalt) are distributed over agricultural or other land plots. The weathering process involves trapping CO2 but will also typically ameliorate soil properties (pH, soil moisture retention, cation exchange capacity, availability of Si), and can therefore be expected to positively affect plant and microbiological activity. This technique has been proposed in different modified forms over the past decades. In its current format, mainly its potential for near global application (e.g. Beerling et al. 2020) is stressed, and its acceptance is helped by the positive reception by e.g. nature organisations that already apply it as a technique for ecological restoration. Two main and largely separated processes result in trapping of CO2. The first is precipitation of carbonates, often as nodules, in the soil. The second is increased CO2 solubility in groundwater and eventually ocean water due to an increase of the pH value, referred to as the pH-trap. Most of the pH-trapping schemes are built on the assumption that CO2 is dissolved in infiltrating and shallow ground water, then discharged into surface water and consecutively transported to the seas and oceans. In that reservoir CO2 is expected to remain dissolved for centuries and possibly up to ten thousands of years, depending on surfacing times of deep oceanic currents. Another pathway that is systematically overlooked is that of groundwater fluxes that recharge deeper groundwater bodies. Depending on the regional geology, a significant fraction of infiltrating water will engage in deeper and long-term migration. For Belgium, the contribution of hydrodynamic trapping, depending on the hydrogeological setting, could be any part of the 15 to 25% of precipitation that infiltrates. Once infiltrating water enters these cycles, it will not come into contact with the atmosphere for possibly fifty thousand years. In this model, the long-term impact of ERW as a climate mitigation measure rests on a good understanding of the larger hydrogeological context, which encompasses infiltration and the deeper aquifers. Deep aquifers, as well as the migration paths towards them, are strictly isolated and residence times are much longer than for oceans. Recharge areas for deeper aquifer systems may therefore become preferential sites for ERW application, becoming an additional evaluation factor for siting ERW locations that is currently based on surface factors alone.
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference ENHANCING POLAR RESEARCH AND DECISION MAKING: ADVANCES IN INTERNATIONAL DATA SHARING THROUGH ACTIVE COLLABORATION
A number of recent conferences, workshops and meetings have confirmed that there are many national, regional and local projects and programs that are active in polar data mana - gement and stewardship and also have a mandate or desire to contribute to regional or international coordination of effort and activities. Many of those initiatives have resources available and are making progress towards an envisioned connected, interoperable polar data system. The international polar data community is eager to improve cooperation and coordination of their efforts. In the spring of 2018, representatives from a wide range of different active programs and projects will come together to focus on work planning and coordination of effort. This meeting will complement past workshops and fora (e.g. IPY, Polar Data Forums etc.) that have been effective in defining important community challenges and technical issues. The focus of the planned meeting will be to generate detailed plans on how best to mobilise existing and soon-to-be initiated funded activities to develop a particular international data sharing case study. At the annual meetings of the Arctic Data Committee and the Standing Committee on Antarctic Data Management held in Montreal in September 2017, a focus on the sharing of meteorological observations and linking to existing terrestrial data networks was discussed as one possibility. Discussions on the precise nature of the case study will continue, a decision will be taken during the fall of 2017 and it will be reported in this paper. The meeting will be co-led and co-organized by key polar data projects and programs. As of writing, organizers include: IASC/SAON Arctic data Committee; SCAR Standing Committee on Antarctic Data Management; Southern Ocean Observing System; Global Cryosphere Watch and related WMO activities; Polar View; Arctic Spatial Data Infrastructure; EU Arctic Cluster including 8 current EU funded projects; GEO Cold Regions Initiative; Canadian Polar Data Workshop Network; Canadian Consortium on Arctic Data Interoperability; representatives from the Arctic Social Science Community; Research Data Alliance. One International Indigenous organization was part of the initial conceptualization of project in June of 2017 and more input is needed and is actively being sought from Indigenous organizations. In this presentation we report details of the planning process, the established case study, possible inte roperability mechanisms and a discussion of the collaborative process involved in bringing together data stewards from around the Arctic, Antarctica and beyond.
Located in Library / RBINS Staff Publications 2017