Skip to content. | Skip to navigation

Personal tools

You are here: Home
2366 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference La sépulture mésolithique individuelle de l'abri des Autours (Belgique)
Located in Library / RBINS Staff Publications
Article Reference La taille des Néolithiques mosans (Belgique).
Located in Library / RBINS Staff Publications
Inproceedings Reference La toute première fois : rythmes et contextes d’apparition d’espèces exogènes ou nouvellement introduites dans certaines régions de France
Located in Library / RBINS Staff Publications 2017
Inproceedings Reference Lack of macrogeographic mtDNA differentiation in Niphargus schellenbergi (Amphipoda)?
Located in Library / RBINS Staff Publications
Inproceedings Reference Land Subsidence Observed in the Merchtem Area (Flanders) – 30 Years of SAR Data Associated to Groundwater Withdrawal?
A land subsidence affecting several towns at the joining limits of the Belgian Provinces of East Flanders, Antwerp and Flemish Brabant is followed during the last three decades. ERS 1–2, ENVISAT, TerraSAR-X and Sentinel-1A satellites SAR scenes were processed from 1992 till October 2020 to map the land subsidence evolution. The subsidence corresponds to a surface area of 220 km 2 during the ERS 1/2 time interval distributed over three distinct subsidence bowls. During the ENVISAT and TerraSAR-X time interval, only one residual subsidence bowl was mapped affecting a surface area of about 70 km 2 . Several towns (Londerzeel and Steenhuffel) remained in the center of the subsidence bowl. The annual average negative velocity values range between −5.99 and −0.5 mm/year. During the Sentinel-1A period, the subsidence bowl has lost half of its surface reaching 36 km 2 . The LOS velocity values have also decreased during the period 2016–2020.
Located in Library / RBINS Staff Publications 2021
Inproceedings Reference Large old tropical trees as keystone biodiversity structures: the Life on Trees program
Association for Tropical Biology and Conservation annual meeting https://www.atbc2024.org Large old tropical trees as keystone biodiversity structures: the Life on Trees program Leponce Maurice1, Basset Yves2, Aristizábal-Botero Ángela1, Albán Castillo Joaquina3, Aguilar Rengifo Guillermo4, Barbut Jérôme5, Buyck Bart5, Butterill Phil6, Calders Kim7, Carrias Jean-François8, Catchpole Damien9, D’hont Barbara7, Delabie Jacques10, Drescher Jochen11, Ertz Damien12, Heughebaert André13, Hofstetter Valérie14, Leroy Céline15, Leveque Antoine16, Macedo Cuenca Victor4, Melki Frédéric17, Michaux Johan18, Ocupa Horna Luis19, Pillaca Huacre Luis3, Poirier Eddy20, Ramage Thibault21, Rougerie Rodolphe5, Rouhan Germinal5, Rufray Vincent17, Salas Guererro Marcos4, Scheu Stefan11, Schmidl Jürgen22, Silva Dávila Diana3, Valenzuela Gamarra Luis23, Vanderpoorten Alain18, Villemant Claire5, Youdjou Nabil1, Pascal Olivier17 1 Royal Belgian Institute of Natural Sciences, Vautier st. 29, Brussels, 1000, Belgium; 2 Smithsonian Tropical Research Institute, Panama; 3 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru; 4 Servicio Nacional de Áreas Naturales Protegidas por el Estado, Ministerio del Ambiente, Peru; 5 Muséum national d'Histoire naturelle, Paris, France; 6 Biology Centre, Czech Academy of Sciences, České Budějovice,Czech Republic; 7 Ghent University, Belgium; 8 Université Clermont-Auvergne, Clermont-Ferrand, France; 9 Independent Consultant, Lima, Peru; 10 Centro de Pesquisas do Cacau – CEPEC, Itabuna, Brasil; 11 Göttingen University, Germany; 12 Meise Botanic Garden, Belgium; 13 Belgian Biodiversity Platform, Brussels, Belgium; 14 AGROSCOPE, Nyon, Switzerland; 15 AMAP (Univ. Montpellier, CIRAD, CNRS, INRAE, IRD), Montpellier, France; 16 PatriNat (OFB-CNRS-MNHN), Paris, France; 17 Fonds de Dotation Biotope Pour La Nature, Mèze, France; 18 Université de Liège, Belgique; 19 Centro de Investigación en Biología Tropical y Conservación, Piura, Perú ; 20 Independent entomologist, Cayenne, Guyane ; 21 Independent entomologist, Concarneau, France ; 22 Universität Erlangen-Nürnberg, Germany. ; 22 Jardín Botánico de Missouri, Peru E-mail: (presenting author): mleponce@naturalsciences.be The aim of the Life on Trees (LOT, www.lifeontrees.org) program is to generate baseline knowledge about the number of eukaryotic species that a single large mature tropical tree can host and to understand how these communities of organisms are assembled. The program is being undertaken in the Andean Amazon biodiversity hotspot. Our first project, LOT01 in the Andean foothills in 2022, located at 400m a.s.l., involved the study of a spectacular Dussia tessmannii tree (Fabaceae), towering at 50 meters in height and 45m wide. Our second project, LOT02 in the Andes in 2023, at 2450m a.s.l., focused on a 32-meter-tall Ficus americana subsp. andicola. Surveys were carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). To better understand the contribution of different tree components (bark, leaves, fruits, flowers, living and dead wood) to overall tree biodiversity, we partitioned observations into communities based on vertical strata or microhabitat and will examine similarities and nestedness in the composition of these communities. Initial findings indicate that significant diversity is harbored by the individual tree at both locations (e.g., LOT01 vs LOT02: 42 vs 114 orchid species, 28 vs 28 fern species, 200+ vs 300+ bryophyte species, and 180 vs 100+ lichen species identified). These figures set world records for their respective elevations. This confirms that large old tropical trees are important pools of biodiversity, probably related to the variety of local microhabitats and tree age.
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Large old tropical trees as pools of biodiversity: the Life On Trees program
The aim of the Life On Trees (LOT) program is to generate baseline knowledge about the number of eukaryotic species a single large aged tropical tree can host and to understand how these communities of organisms are assembled. The program is conducted in the Amazon and Andes biodiversity hotspots. Our first project, LOT-Amazon 2022, was performed on a spectacular Dussia tree (Fabaceae), which was 50 m high and 45 m wide. The sampling was carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). To better understand the contribution of different tree components (bark, leaves, fruits, flowers, living and dead wood) to overall tree biodiversity, we assigned observations into communities based on height zone or microhabitat and will examine similarities and nestedness in the composition of these communities. The first results show that a single tree can host a tremendous diversity (e.g., 42 orchids, 28 ferns, and more than 200 bryophytes, 180 lichen species identified, which are world records considering the 400m elevation). This confirms that large old tropical trees are important pools of biodiversity probably in relation with the variety of local microhabitats and tree age. Funding: Fonds de Dotation Biotope pour la Nature Web and/or Twitter account: www.lifeontrees.org
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Large scale biodiversity inventories and collections: challenges and solutions.
Located in Library / RBINS Staff Publications
Inproceedings Reference Large-scale DNA barcoding of ants from Ecuador
Located in Library / RBINS Staff Publications
Conference Reference Larval dispersal and juvenile dynamics of flatfish in the Southern North Sea.
Marine populations display some of the most extreme patterns of spatial and temporal heterogeneity in demographic factors. Over the past few decades, many marine fisheries have declined or even collapsed. This is in large part, due to climate change and detrimental anthropogenic influences (e.g. habitat degradation and overfishing). Due to a highly complex optimal window between biological needs and favorable environmental factors, marine species are very susceptible to natural perturbations. This leads to unpredictable reproductive success, high mortality and obscure population delineations. Preventing a complete collapse offish stock requires a thorough knowledge of the recruitment dynamics. With the B-FishConnect project we want to disentangle the physical and biological factors influencing dispersal and recruitment in flatfish. Within the project, we will focus on four commercially important flatfish species in the North Sea: sole, plaice, turbot and brill. To quantify the role of physical and biological factors on the population dynamics, a combination of hydrodynamic and demographic-genetic models will be applied. The output of these models will be compared to empirical field data. The focus of this project will be on the post-larval and juvenile stages of flatfish. Information on the spatial-temporal dynamics of larvae and juveniles will be gathered by an intense sampling campaign along the coast as well as on sea. Additional information will be obtained through historical datasets. The larval dispersal history will be inferred by analysing the otolith microstructure of juvenile flatfish. The effect of the larval history and local habitat characteristics on the future survival and condition of juvenile flatfish will be investigated. This will be accomplished by using biomarkers and condition indices. The derived information on life-history traits, population structure and spatio-temporal dynamics will be used to validate the dispersal models (Lacroix et al., 2013). In a later phase this will allow us to test different ecological hypotheses and to assess the impact of various scenarios related to climate change and human impact on flatfish in the North Sea. Consequently these data will be vital for fisheries and conservation management.
Located in Library / RBINS Staff Publications