Skip to content. | Skip to navigation

Personal tools

You are here: Home / RBINS Staff Publications / Search publications of the members of the Royal Belgian institute of natural Sciences

Search publications of the members of the Royal Belgian institute of natural Sciences

Article Reference Perturbation of a coastal Tethyan environment during the Paleocene-Eocene thermal maximum in Tunisia (Sidi Nasseur and Wadi Mezaz).
Despite the large number of studies on the Paleocene–Eocene thermal maximum (PETM), the knowledge of environmental and biotic responses in shallow marine environments remains quite poor. Benthic foraminiferal assemblages of the Sidi Nasseur and Wadi Mezaz sections in Tunisia were studied quantitatively and the paleoecologic interpretations provide new insights into the complex relationship between PETM global warming and perturbations of shallow marine settings. These sections expose upper Paleocene to lower Eocene shales and marls of the El Haria Formation up to the phosphate layers of the Chouabine Formation underlying the El Garia limestones. The Sidi Nasseur section contains a more complete and expanded Paleocene–Eocene boundary interval compared to Wadi Mezaz, although being truncated at the top. The Wadi Mezaz section contains a more complete post-PETM interval. The studied interval can be subdivided into a sequence of 4 biofacies, representing respectively a latest Paleocene biofacies, two PETM biofacies and one post-PETM Eocene biofacies. The latest Paleocene biofacies 1 consists of numerous calcareous benthic foraminifera (e.g. Anomalinoides midwayensis, Frondicularia aff. phosphatica and various Bulimina and Lenticulina species), abundant noncalcareous taxa (Haplophragmoides) and rare planktic foraminifera, indicating a slightly hypersaline eutrophic inner neritic to coastal environment, regularly interrupted by oxygen deficiency (moderate dysoxia). During the latest Paleocene, this highly productive environment shallowed as indicated by the increasing abundances of A. midwayensis. The variable dominance of non-calcareous agglutinated taxa in biofacies 1 indicates post-mortem dissolution effects. The TOC δ13Corg record reveals a sharp negative excursion, marking the base of the Eocene. In general, the absence of lithologic changes, an increasing sedimentation rate and absence of reworking indicate that the initial part of the PETM is complete and expanded in the Sidi Nasseur section. A sharp faunal turnover coincides with this negative δ13Corg excursion and is characterized by the disappearance or diminution of common Paleocene taxa in this area. During the PETM, benthic foraminifera are less abundant and consist of opportunistic non-calcareous taxa together with deeper dwelling (middle neritic) lagenids and buliminids (biofacies 2 and 3). Planktic foraminifera, dominated by flat-spired Acarinina (mainly A. multicamerata), become more abundant, as observed in many open marine sequences worldwide. All these faunal parameters suggest more stressed probably severe dysoxic sea floor conditions within a transgressive phase during the onset of the PETM. An estimation of the total duration of the Sidi Nasseur PETM interval is difficult to establish, yet the lack of recovery carbon isotope values suggests that the preserved PETM interval reflects only a part of the CIE “core”. The top of the PETM interval is truncated due to local (?) erosion during the early Eocene. The Eocene recovery fauna is mainly composed of Lenticulina and Stainforthia species (biofacies 4), indicating restricted coastal to hyposaline lagoonal eutrophic conditions, distinctly different from earlier environmental conditions.
Article Reference Characterization of the Latest Danian Event by means of benthic foraminiferal assemblages along a depth transect at the southern Tethyan margin (Nile Basin, Egypt).
The Latest Danian Event (LDE) has been recognized on the southern Tethyan margin (Egypt; Tunisia), and in the Atlantic (Zumaia, Spain) and Pacific Oceans (ODP Site 1209). Based on a supraregional carbon isotope excursion, and a negative shift in oxygen isotopes in the Pacific it has been suggested that the LDE is an early Paleogene transient warming event. So far the environmental effects of the LDE have been observed in few sections and details on its impact and duration are scarce. We present a quantitative study of benthic foraminiferal assemblages retrieved from five sections along a depth transect on the Paleocene southern Tethyan shelf (Nile Basin, Egypt) to assess paleoenvironmental change during the LDE. The lithologic sequences and foraminiferal assemblages indicate that the onset of the LDE is related to widespread shelf dysoxia. The organic-rich laminated marls of lower LDE bed I contain levels devoid of benthic foraminifera. During the later stage of the LDE (dark-gray shales of bed II) the shelf is repopulated by a Neoeponides duwi benthic assemblage, occurring in all sections, initiating a gradual restoration of normal-marine shelf environments. Q-mode and R-mode correspondence analysis assist in the interpretation of the N. duwi assemblage, which is related to disturbed conditions at the sea floor following oxygen depletion and increased organic loading. The sharp lithologic boundary at the base of the LDE suggests that the event coincides with a rapid transgression following a sea-level fall, with an estimated amplitude of ~ 50 m or less. Comparison with the Dan-C2 and ELPE/MPBE, two proposed transient warming episodes preceding and postdating the LDE, shows that the three Paleocene events have several characteristics in common. However, the duration of the LDE (~ 200 kyr) exceeds the estimated duration of the other events, and a sea-level cycle is only reported from the LDE.
Article Reference Large-scale glaciation and deglaciation of Antarctica during the Late Eocene: Comment.
Peters et al. (2010) present a hypothesis for a late Eocene glaciation, by interpreting an incision surface at Wadi Al-Hitan (Egypt) as indicating a 40+ m fall in eustatic sea levels. We argue that there is no evidence for a major fall in sea level, and that their calibration of the event is unproven.
Article Reference Early Paleogene δ13C and δ18O records based on marine ostracodes: implications for the upper Danian succession at Sidi Nasseur (Tunisia) and their application value in paleoceanography
Ostracode and other microfossil assemblages from the Tunisian Trough have previously been studied to characterize paleoenvironmental conditions during the late Danian interval. Whereas the preservation of foraminifera is generally not sufficient for stable isotope studies, well preserved ostracodes provide continuous upper Danian stable isotope records (δ13C, 18O) at Sidi Nasseur, W Tunisia. The late Danian is considered to cover a hyperthermal, known as the “Latest Danian Event” (LDE; ~61.75 Ma) or “Top C27n Event” and has been unequivocally identified in benthic foraminiferal isotopes from shelf sediments in Egypt and deep-sea material from the Pacific Ocean. Stratigraphic changes in the isotope ratios of the genus Bairdia reveal a rather scattered record for δ13C lacking any pronounced negative δ13C excursion, probably due to the many factors influencing δ13C in ostracodes like metabo- lism, diet or dissolved inorganic carbon of sea-water. The accompanying δ18O record is less ambiguous showing a shift towards lower values close to the level where the LDE is to be expected, but minimum values are similar to δ18O values at the base and top of the studied sequence. These data suggest that the core of the negative stable isotope excursions of the LDE is lost in the stratigraphic gap at the planktic foraminiferal P3a/P3b and calcareous nannofossil NTp7A/NTp7B subzonal boundaries, so that the LDE could not be unequivocally identified in Tunisia. A cross-plot of δ13C and δ18O of ostracode valves displays distinctive clusters for smooth-shelled taxa like Bairdia and others as well as for ornamented taxa, with the latter group showing substantially lower values for both δ13C and δ18O. This pattern strongly resembles those from early Eocene data from southwestern France and Recent ostracodes from the Iceland Plateau. The offsets suggest substantial differences in life style, food source or isotope fractionation during the calcification process for different shell morphologies in ostracodes.
Article Reference Biotic impact of Eocene thermal maximum 2 in a shelf setting (Dababiya, Egypt).
The Paleocene-Eocene thermal maximum (PETM) initiated a global biotic event with major evolutionary impacts. Since a series of minor δ13C and δ18O excursions, indicative of hyperthermals, now appears to characterize early Eocene climate, it remains to be investigated how the biosphere responded to these warming events. We studied the Esna Formation at Dababiya (Nile Basin, Egypt), in order to identify Eocene thermal maximum 2 (ETM-2) and to evaluate the foraminiferal and ostracode patterns. The studied interval generally consists of gray-brown marls and shales and is interrupted by a sequence of deviating lithologies, representing an early Eocene Egyptian environmental perturbation that can be linked to ETM-2. The ETM-2 interval consists of brownish shales (bed 1) to marls (bed 2) at the base that grade into a foraminifera-rich chalky limestone (bed 3) at the top. This conspicuous white limestone bed forms the base of the Abu Had Member. A distinct negative δ13C excursion of approximately 1.6‰ is recorded encom- passing this interval and a second negative δ13C shift of 1‰ occurs 5 m higher. These two isotope events are situated respectively in the basal and lower part of the calcareous nannoplankton zone NP11 and appear to correlate with the H1 and H2(?) excursions observed in the deep-sea records. The lower δ13C excursion is associated with benthic foraminiferal and ostracode changes and settlement of impoverished anomalous foraminiferal (planktic and benthic) assemblages, indicating a transient environmental anomaly, disrupting the entire marine ecosystem during ETM-2. Our observations indicate some similarities between the sedimentary and biotic expressions of ETM-2 and the PETM at Dababiya, pointing to similar processes operating in the Egyptian Basin during these global warming events.
Article Reference The role of human interference on the channel shifting of the Karkheh River in the Lower Khuzestan plain (Mesopotamia, SW Iran)
This study is concerned with the Late Holocene floodplain history of the Karkheh River in Lower Khuzestan, and in particular with the role of human action upon its channel shifts. The research was conducted in a multidisciplinary way, in which resources and approaches from different research fields were combined: (1) geomorphological mapping based on the interpretation of Landsat and CORONA satellite imagery, (2) analyses of geological sequences, including the identification of sedimentary facies and radiocarbon dating of organic material, (3) an archaeological field survey of ancient settlements, and (4) consultation of historical documents, mainly Arabic texts from the 9th–14th century and European travel literature from the 16th-early 20th century. Three main channel belts of the Karkheh were identified (labelled Kh1, Kh2 and Kh3), corresponding to successive stages in the evolution of the floodplain. Two river shifts are documented in the datasets, both taking place within the last 2000 years. The first avulsion regards a shift from channel belt Kh1, once a tributary of the Karun, to the straight river bed of Kh2, taking place at least after 1240–1310 cal BP/710–640 AD. The second avulsion, from Kh2 to Kh3, is clearly documented in historical sources and happened in a single night event in the year 1837/113 cal BP. Reactivation of the Kh2 river bed and its irrigation canals can be attributed to the recent construction of an artificial canal bypassing the second avulsion point. Both river shifts were strongly influenced by human interference, whereby an artificial irrigation canal took over the entire river flow from the main channel belt. Most likely, a combination of human-induced factors, such as weakening of the river levees, high sedimentation rates and disadvantageous channel gradients, led to a situation prone to avulsion.
Article Reference Intra- and intertaxon stable O and C isotope variability of fossil fish otoliths: an early Eocene test case
Knowledge of basic data variability is essential for the interpretation of any proxy-based paleotemperature record. To evaluate this for δ18O stable isotope paleothermometry based on early Paleogene fish otoliths from marginal marine environments, an intra- and interspecific stable O and C isotope study was performed at a single locality in the southern North Sea Basin (Ampe Quarry, Egem, Belgium), where shallow marine sands and silts are exposed. The age of the deposits is early late Ypresian (ca. 50.9 Ma) and falls within the early Eocene climatic optimum (EECO) interval. In each of four fossiliferous levels sampled, the same three otolith species were analyzed (Platycephalus janeti, Paraconger papointi and “genus Neobythitinorum” subregularis). Intrataxon stable isotope spread amounts on average 2.50-3.00‰ for all taxa and is present in all levels. This implies that each sample level comprises substantial variability, which can be attributed to a combination of temporal and taphonomic effects. More importantly, intertaxon offsets of 4.60‰ in δ13C and 2.20‰ in δ18O between the mean values of the three otolith species are found, with “N.” subregularis representing more positive values relative to the other species. We hypothesize that freshwater influence of coastal waters is the most likely cause for these discrepancies. Similar analyses on two coastal bivalve species (Venericardia sulcata and Callista laevigata) corroborate this hypothesis. Accordingly, δ18O values measured on “N.” subregularis otoliths probably represent a more open oce- anic signal, and therefore seem well-suited for δ18O stable isotope paleothermometry. This study highlights the importance of investigating data variability of a biogenic carbonate paleotemperature proxy at the species level, before applying paleotemperature equations and interpreting the outcome.
Article Reference A complete insect from the Late Devonian period
Article Reference First occurrence of the lungfish Sagenodus (Dipnoi, Sarcopterygii) from the Carboniferous lagerstätte of Montceau-les-Mines, France
Article Reference New data on the Silurian-Devonian palaeontology and biostratigraphy of Bolivia
Inbook Reference Octet Stream Geoarchaeological Research in Lower Khuzestan: State of the Art
Inproceedings Reference L’hématite abrasée : usages et fonctions dans le Néolithique ancien d’Europe du Nord-ouest
Inproceedings Reference Studying the Influence of Landscape Changes on the Late Bronze Age Abandonment of the Harbour Town HST: Unravelling the Sedimentary Record of the Larnaca Salt Lake, Cyprus
Unpublished Reference Site Saint-Lambert, à Liège : Datations Carbone 14 par A.M.S. des occupations mésolithiques et néolithiques (secteur DDD et SDT)
Unpublished Reference 3. Les occupations pré-romaines
Unpublished Reference Annexe I. Datation radiocarbone des niveaux pré-romains du site de Bruyelle
Inproceedings Reference Using Historical Imagery and GIS for Reconstructing the Ancient Landscapes of Khuzestan (SW Iran)
Inproceedings Reference Ostracodes et lithologie du stratotype de la Formation du Mont d'Haurs (Givétien)
Unpublished Reference L'altération des briquets en «marcassite» du «Trou de Chaleux» (Fouilles d’Édouard Dupond) : identification de phases minérales primaires et secondaires
Inproceedings Reference The role of rivers in ancient societies, or how man transformed the alluvial landscapes of Khuzestan (SW Iran)
 Help


 
reference(s)

 
 
add or import
2023
add or import
2023 PDFs directly available
add or import
2022
add or import
2022 PDFs directly available
add or import
2021
add or import
2021 PDFs directly available
add or import
2020
add or import
2019
add or import
2018
add or import
2017
add or import
2016
add or import
before 2016
add or import
before RBINS
add or import
after RBINS
   


   
 
PDF One Drive Repository
 
Add in the year folder