Skip to content. | Skip to navigation

Personal tools

You are here: Home / RBINS Staff Publications / Search publications of the members of the Royal Belgian institute of natural Sciences

Search publications of the members of the Royal Belgian institute of natural Sciences

Article Reference Revisional notes on Trictenotoma Gray, 1832 (Coleoptera: Trictenotomidae) in Indochina bioregion, with description of a new species
Article Reference Brabantophyton, a new genus with stenokolealean affinities from a Middle to earliest Upper Devonian locality from Belgium
A new taxon with stenokolealean affinities, Brabantophyton runcariense gen. et sp. nov., is described from seven pyrite permineralized axes collected from the mid Givetian to earliest Frasnian (late Middle to earliest Upper Devonian) locality of Ronquières (Belgium). The specimens include stems and lateral organs. The stems are characterized by a protostele dissected into three primary ribs, each of them dividing into two secondary ribs. The protostele shows a central protoxylem strand and numerous strands distributed along the midplanes of the ribs. The vascular supply to lateral organ is composed of two pairs of traces, produced at the same time by the two ribs issued from a single primary rib of the protostele. Within each pair, the shape and the size of the traces are unequal: one is T-shaped and the other is oval to reniform. The T-shaped traces of each pair face each other. The inner cortex of the lateral organs is parenchymatous and the outer cortex is sparganum-like. The specimens of Brabantophyton runcariense show many similarities with the stenokolealean genus Crossia virginiana Beck and Stein, but the vascular supply of lateral organs of the latter consists of a more symmetrical and distinctively simpler pair of traces. Brabantophyton represents the first report of the Stenokoleales in southeastern Laurussia. The characteristics of the Brabantophyton protostele compare better with the anatomy of the radiatopses, and, within the latter, particularly with basal seed plants.
Article Reference Les sciences géologiques à l’Université de Liège : deux siècles d’évolution Partie 1 : de la fondation à la Première Guerre Mondiale
By the time the University of Liège was founded in 1817, geology was a young science and the geological composition of the country was being unveiled. The works of precursors such as Robert de Limbourg were about to inspire the first generation of Belgian geologists, among which Jean-Baptiste Julien d’Omalius d’Halloy is the most renowned. Geology was not taught at the University of Liège before 1818, when Henri-Maurice Gaëde was appointed. He taught geology, mineralogy and crystallography as well as anatomy and botany. He was followed by Armand Lévy in 1828, then again by Gaëde in 1830, Philippe-Adolphe Lesoinne in 1831, Charles-Philippe Davreux 1834 and Michel Gloesener in 1834. Except the mineralogist Lévy, none of them conducted any geology-based research. Nevertheless, geological knowledge, especially palaeontology, progressed due to the work of scientists such as Philippe-Charles Schmerling who described the first fossil human in 1830. Geology became a true research area at the university with the arrival of André Dumont in 1835. Before his appointment as professor, Dumont had already proved his mastery of geology by publishing his Description géologique de la province de Liége which earned him the golden medal of the Academy of Sciences and Arts of Brussels and a great reputation. He was the first to demonstrate the stratigraphic succession of the strata (geognosy) and to trace those strata on a map to show how they correlate. A great field geologist, Dumont was appointed by the Belgian Government to map the geology of the country, providing the first geological map of Belgium and neighbouring areas as a whole in 1849. At the same period (1846), Laurent-Guillaume de Koninck was appointed to teach palaeontology. His expertise on all groups of fossil animals drove him to produce an impressive number of monographic publications, on Belgian material but also on collections sent to him from all over the world. His Faune du Calcaire carbonifère de la Belgique – of which only the six first volumes were published before his death – is by itself the most exhaustive study of Carboniferous invertebrates ever published. De Koninck was in conflict with Dumont about the utility of fossils in geology, the latter being persuaded that they were too variable to have any significance. However, de Koninck’s palaeontological methods were indeed necessary and led to the development of biostratigraphy. Both Dumont and de Koninck received the Wollaston medal from the Geological Society of London for their work. Their successor Gustave Dewalque became – in 1857 – professor of geology and palaeontology and combined the scientific views of both his predecessors to produce very detailed and holistic research. His palaeontological work on the Jurassic fossils of S Belgium is most remarkable but his main achievement was his geological map of Belgium and surrounding areas, replacing Dumont’s with a much higher level of details. To make the reading of the map easier, Dewalque wrote his masterful Prodrome d’une description géologique de la Belgique (1868), which is no less than an encyclopaedia on geology of Belgium. His name is also inseparable from two major achievements in Belgium. Firstly the production of a detailed geological map at the 1/40,000 scale for which he achieved scientific posterity. Secondly he was the founding character of the Société géologique de Belgiquein 1874 and was also Secretary General of the society for 25 years. For his tremendous works, Dewalque received the prestigious Hayden medal from the Academy of Natural Sciences of Philadelphia in 1899. During his academic life, Dewalque progressively delegated his teaching to his young collaborators who eventually replaced him: Alfred Gilkinet for Palaeobotany, Julien Fraipont for Palaeontology, Adolphe Firket for Physical Geography, Guiseppe Cesàro for Mineralogy, and Max Lohest for General and Applied Geology. Alfred Gilkinet was one of the first palaeobotanists to embrace the theory of evolution and to recognise it among his fossils. He had a particular interest on Devonian fossil plants but also described material from the Paleogene. He was moreover a pharmacist and the institute of Pharmacy of the University bears his name. Julien Fraipont first entered the university at the laboratory of biology led by Edouard Van Beneden and published several papers on marine organisms for him. His work on Devonian crinoids was rewarded by the Société géologique de Belgiqueaward and de Koninck chose him to collaborate to his monography on Carboniferous bivalves. Fraipont published several papers on Palaeozoic fossils, the most remarkable being his work on the exquisitely-preserved echinoderms from the Marbre Noir de Denée. Furthermore, Fraipont was, with his colleague Lohest, a palaeoanthropologist and archaeologist and both were responsible for many discoveries in Quaternary cave deposits, including in Spy. Lohest was first a palaeontologist and published several contributions to the Palaeozoic fishes from Belgium, including a mandible identified by him as being from a fish but now interpreted as a rare Ichthyostega-like tetrapod. He then focused only on geology and applied geology after his major discoveries; such as the phosphate deposits in Hesbaye area, his prevision of the existence of coal measure in a deep basin in N Belgium, his interpretation of the metamorphism in Ardenne and description of the boudinage phenomenon. With Julien Fraipont and Marcel de Puydt, he discovered and described the human remains from the Spy cave – remains they interpreted as belonging to a species distinct from ours and that they attributed to the Neanderthal ‘race’. They demonstrated, for the first time in history, the co-occurrence of a fossil human species, Mousterian lithic industries and Pleistocene megafauna. Adolphe Firket mainly taught Physical Geography but was involved in the geological study of the Belgian coal measures and various mineral deposits. Guiseppe Cesàro was the true founder of mineralogy and crystallography in Belgium. His works on calcites and phosphates were very advanced despite that he was a self-taught man. They are still used as references today as are his works on crystallography. All those great names were part of the University and Belgian geology history, as men, scientists and professors. They left us a considerable heritage that needs to be rediscovered.
Article Reference Sawflies from northern Ecuador and a checklist for the country (Hymenoptera: Argidae, Orussidae, Pergidae, Tenthredinidae, Xiphydriidae)
Article Reference The stick insect genus Medauroidea Zompro, 2000: Taxonomic note and extension to Laos and Cambodia with one new species, M. ramantica sp. nov. (Phasmida: Phasmatidae: Clitumninae)
Article Reference Rugueux coloniaux mésodévoniens du Fondry des Chiens à Nismes (Ardenne, Belgique)
Article Reference The Belgian collections of fossil Cnidaria and Porifera
Article Reference Review: the energetic value of zooplankton and nekton species of the Southern Ocean
Understanding the energy flux through food webs is important for estimating the capacity of marine ecosystems to support stocks of living resources. The energy density of species involved in trophic energy transfer has been measured in a large number of small studies, scattered over a 40-year publication record. Here, we reviewed energy density records of Southern Ocean zooplankton, nekton and several benthic taxa, including previously unpublished data. Comparing measured taxa, energy densities were highest in myctophid fishes (ranging from 17.1 to 39.3 kJ g−1 DW), intermediate in crustaceans (7.1 to 25.3 kJ g−1 DW), squid (16.2 to 24.0 kJ g−1 DW) and other fish families (14.8 to 29.9 kJ g−1 DW), and lowest in jelly fish (10.8 to 18.0 kJ g−1 DW), polychaetes (9.2 to 14.2 kJ g−1 DW) and chaetognaths (5.0–11.7 kJ g−1 DW). Data reveals differences in energy density within and between species related to size, age and other life cycle parameters. Important taxa in Antarctic food webs, such as copepods, squid and small euphausiids, remain under-sampled. The variability in energy density of Electrona antarctica was likely regional rather than seasonal, although for many species with limited data it remains difficult to disentangle regional and seasonal variability. Models are provided to estimate energy density more quickly using a species’ physical parameters. It will become increasingly important to close knowledge gaps to improve the ability of bioenergetic and food web models to predict changes in the capacity of Antarctic ecosystems to support marine life. © 2018, The Author(s).
Article Reference Historical DNA metabarcoding of the prey and microbiome of trematomid fishes using museum samples.
Inproceedings Reference Finding the data you need to support your Southern Ocean science
Inproceedings Reference Comparison of spatial genetic structure and its drivers in Arctic and Antarctic fishes
Marine populations are genetically structured through historical processes, environmental or physical barriers and life history characteristics. Divergent patterns of demographic history, even among closely-related species sharing climatic changes, raise questions about the influence of species-specific traits on population structure. The Southern Ocean features comparatively high biodiversity, which has been attributed to frequent local extinction-recolonization cycles that have driven benthic, Antarctic organisms into temporary refugia. In contrast, organisms in the Arctic were able to shift latitude in response to changing Pleistocene climate. We therefore hypothesize that Arctic populations were historically less constrained in their distribution than Antarctic fish populations and hence show lower levels of genetic structure. For assessing the role of lifestyle in influencing demographic history in the Southern Ocean closely related notothenioid fish with benthic (Trematomus bernacchii, T. hansoni) and semi-pelagic or even cryopelagic (T. newnesi) lifestyles were genetically analysed. In the Arctic, polar cod (Boreogadus saida), which is often found in association with sea ice, but also throughout the water column to the bottom, can be regarded as semi- or cryopelagic too. The Antarctic species were analysed by six microsatellite and one mitochondrial marker before (Van de Putte et al., 2012) and we extend these analyses with data from nine microsatellite markers in polar cod. Antarctic species showed significant genetic population structure between High-Antarctic and Peninsular regions and much lower differentiation in pelagic than benthic species. It suggests that the observed patterns are indeed related to ecological traits of Antarctic fish. In the Arctic, we hypothesize genetic structuring inside fjords in Svalbard relative to shelf specimens, which we expect to show low or absent structure as in Antarctic species with a similar lifestyle. Identifying common driving factors for population structure is important in order to enable forecasting, particularly in light of dramatically increasing rates of environmental change. Comparing population genetic patterns and exploring underlying causes from both poles may thus help to shed light on how fish populations survived in the past and may persist in the future. Reference - Van de Putte A., Janko K., Kasparova E., Maes G.E., Rock, J., Koubbi P., Volckaert F.A.M., Choleva L., Fraser K.P.P., Smykla J., Van Houdt J.K.J., Marshall C. 2012 Comparative phylogegraphy of three trematomid fishes reveals contrasting genetic structure patterns in benthic and pelagic species. Marine Genomics 8:23-34.
Article Reference Toward a new data standard for combined marine biological and environmental datasets-expanding OBIS beyond species occurrences
Article Reference Developing priority variables (``ecosystem Essential Ocean Variables'' - eEOVs) for observing dynamics and change in Southern Ocean ecosystems
Reliable statements about variability and change in marine ecosystems and their underlying causes are needed to report on their status and to guide management. Here we use the Framework on Ocean Observing (FOO) to begin developing ecosystem Essential Ocean Variables (eEOVs) for the Southern Ocean Observing System (SOOS). An eEOV is a defined biological or ecological quantity, which is derived from field observations, and which contributes significantly to assessments of Southern Ocean ecosystems. Here, assessments are concerned with estimating status and trends in ecosystem properties, attribution of trends to causes, and predicting future trajectories. eEOVs should be feasible to collect at appropriate spatial and temporal scales and are useful to the extent that they contribute to direct estimation of trends and/or attribution, and/or development of ecological (statistical or simulation) models to support assessments. In this paper we outline the rationale, including establishing a set of criteria, for selecting eEOVs for the SOOS and develop a list of candidate eEOVs for further evaluation. Other than habitat variables, nine types of eEOVs for Southern Ocean taxa are identified within three classes: state (magnitude, genetic/species, size spectrum), predator-prey (diet, foraging range), and autecology (phenology, reproductive rate, individual growth rate, detritus). Most candidates for the suite of Southern Ocean taxa relate to state or diet. Candidate autecological eEOVs have not been developed other than for marine mammals and birds. We consider some of the spatial and temporal issues that will influence the adoption and use of eEOVs in an observing system in the Southern Ocean, noting that existing operations and platforms potentially provide coverage of the four main sectors of the region - the East and West Pacific, Atlantic and Indian. Lastly, we discuss the importance of simulation modelling in helping with the design of the observing system in the long term.Regional boundary: south of 30°S. © 2016 The Authors.
Article Reference Lifestyle and Ice: The relationship between ecological specialization and response to Pleistocene climate change
Major climatic changes in the Pleistocene had significant effects on marine organisms and the environments in which they lived. The presence of divergent patterns of demographic history even among phylogenetically closely-related species sharing climatic changes raises questions as to the respective influence of species-specific traits on population structure. In this work we tested whether the lifestyle of Antarctic notothenioid benthic and pelagic fish species from the Southern Ocean influenced the concerted population response to Pleistocene climatic fluctuations. This was done by a comparative analysis of sequence variation at the cyt b and S7 loci in nine newly sequenced and four re-analysed species. We found that all species underwent more or less intensive changes in population size but we also found consistent differences between demographic histories of pelagic and benthic species. Contemporary pelagic populations are significantly more genetically diverse and bear traces of older demographic expansions than less diverse benthic species that show evidence of more recent population expansions. Our findings suggest that the lifestyles of different species have strong influences on their responses to the same environmental events. Our data, in conjunction with previous studies showing a constant diversification tempo of these species during the Pleistocene, support the hypothesis that Pleistocene glaciations had a smaller effect on pelagic species than on benthic species whose survival may have relied upon ephemeral refugia in shallow shelf waters. These findings suggest that the interaction between lifestyle and environmental changes should be considered in genetic analyses. © 2015 Kašparová et al.
Article Reference Octet Stream Toward a new data standard for combined marine biological and environmental datasets - Expanding OBIS beyond species occurrences
The Ocean Biogeographic Information System (OBIS) is the world's most comprehensive online, open-access database of marine species distributions. OBIS grows with millions of new species observations every year. Contributions come from a network of hundreds of institutions, projects and individuals with common goals: to build a scientific knowledge base that is open to the public for scientific discovery and exploration and to detect trends and changes that inform society as essential elements in conservation management and sustainable development. Until now, OBIS has focused solely on the collection of biogeographic data (the presence of marine species in space and time) and operated with optimized data flows, quality control procedures and data standards specifically targeted to these data. Based on requirements from the growing OBIS community to manage datasets that combine biological, physical and chemical measurements, the OBIS-ENV-DATA pilot project was launched to develop a proposed standard and guidelines to make sure these combined datasets can stay together and are not, as is often the case, split and sent to different repositories. The proposal in this paper allows for the management of sampling methodology, animal tracking and telemetry data, biological measurements (e.g., body length, percent live cover, ...) as well as environmental measurements such as nutrient concentrations, sediment characteristics or other abiotic parameters measured during sampling to characterize the environment from which biogeographic data was collected. The recommended practice builds on the Darwin Core Archive (DwC-A) standard and on practices adopted by the Global Biodiversity Information Facility (GBIF). It consists of a DwC Event Core in combination with a DwC Occurrence Extension and a proposed enhancement to the DwC MeasurementOrFact Extension. This new structure enables the linkage of measurements or facts - quantitative and qualitative properties - to both sampling events and species occurrences, and includes additional fields for property standardization. We also embrace the use of the new parentEventID DwC term, which enables the creation of a sampling event hierarchy. We believe that the adoption of this recommended practice as a new data standard for managing and sharing biological and associated environmental datasets by IODE and the wider international scientific community would be key to improving the effectiveness of the knowledge base, and will enhance integration and management of critical data needed to understand ecological and biological processes in the ocean, and on land. © De Pooter D et al.
Inproceedings Reference Colourful rivers: archaeobotanical remains of dye plants from fluvial deposits in late medieval towns in Belgium
During the late medieval period, the southern low countries were among the most densely urbanised areas in Europe. The towns owned part of their growth and prosperity to the flourishing cloth industry, in which dyestuffs played an essential role. Throughout this period dye plants were intensively cultivated, traded on a large scale, and widely used by specialised craftsman organised in guilds. Due to the need for constant water supply and wastewater discharge, dyeing activities were often concentrated in the proximity of rivers. Although dyeing practices are well documented in late medieval historical sources, material evidence remains scarce. The aim of this presentation is to describe and discuss archaeobotanical finds of dye plants, recently found in urban fluvial deposits from Brussels and to put these in perspective with finds from other towns in the area. In 2019 a large excavation in the city centre of Brussels revealed the remains of the late medieval port. Besides the discovery of impressive quay walls, meters thick excellently preserved fluvial deposits were excavated and extensively sampled. One of the most remarkable characteristics of the macrobotanical assemblages dating from the 13th to the 15th century is the presence of numerous weld (Reseda luteola) seeds and madder (Rubia tinctoria) root fragments, found in nearly all studied samples. Several samples also contained woad (Isatis tinctoria) pod fragments. These three species are considered as the most important medieval dye plants in the region. Additionally, fruits and flower head fragments of fuller's teasel (Dipsacus sativus) were observed in most samples. Most likely all these plant remains must be interpreted as waste from textile working, discarded in the urban waters.
Techreport Reference Environmental Impacts of Offshore Wind Farms in the Belgian Part of the North Sea: Getting ready for offshore wind farm expansion in the North Sea.
Techreport Reference Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
Unpublished Reference CROW: Visualize bird migration in your browser
Every spring and autumn, millions of birds migrate over Europe. They mainly do this at high altitudes and at night, making this phenomenon largely invisible to us. But not for weather radars! We developed the open source web application “CROW” so you can explore these data directly in your browser. CROW pulls vertical profile data (vpts) from a public repository, calculates migration traffic rate (MTR), bird density and other variables, and visualizes these as interactive charts. The application can be hosted on a static file server and only visualizes data from one radar at a time, making it highly portable and scalable. CROW was jointly developed by the Research Institute for Nature and Forest (INBO) and the Royal Meteorological Institute of Belgium (RMI) in collaboration with the Royal Belgian Institute for Natural Sciences (RBINS), with financial support from the Belgian Science Policy Office (BelSPO valorisation project CROW). It is deployed at https://www.meteo.be/birddetection to show bird migration in real time across the Benelux. We are planning to deploy it for data in the ENRAM data repository (https://enram.github.io/data-repository/) as well.
Inproceedings Reference Upper Oligocene lithostratigraphic units and the transition to the Miocene in Belgium: can we bring the Dutch, Belgian and German practice in line by using a common nomenclature20?
 Help


 
reference(s)

 
 
add or import
2023
add or import
2023 PDFs directly available
add or import
2022
add or import
2022 PDFs directly available
add or import
2021
add or import
2021 PDFs directly available
add or import
2020
add or import
2019
add or import
2018
add or import
2017
add or import
2016
add or import
before 2016
add or import
before RBINS
add or import
after RBINS
   


   
 
PDF One Drive Repository
 
Add in the year folder