Search publications of the members of the Royal Belgian institute of natural Sciences
-
Palaeogenomic investigations at the Troisième caverne of Goyet, Belgium
- The main excavations at the Troisième caverne of Goyet in Belgium were conducted by Edouard Dupont in 1868 who identified Palaeolithic human occupations later attributed to the Middle and Upper Palaeolithic. These are represented by an archaeologi- cal record that spans the Mousterian, Lincombian-Ranisian-Jerzmanowician, Aurignacian, Gravettian, and Magdalenian, and then extends into the Neolithic and historic periods. Due to the lack of detailed documentation of the excavated materials, their asso- ciation to a specific chronocultural context has been challenging. Morphometric and taphonomic analyses, combined with direct radiocarbon dating as well as isotopic and genetic analyses, were used to assign human remains to either late Neanderthals or an- cient modern humans from different chronocultural groups. In 2016 the first palaeogenetic investigation of Neanderthal specimens from Goyet was published [1]. Taxonomic assignment was confirmed by performing hybridization capture of the mitochondrial DNA (mtDNA) and later inspecting diagnostic mutations at nucleotide positions that distinguish modern humans from Nean- derthals. Moreover, a phylogenetic reconstruction placed seven nearly complete mtDNA sequences from Goyet within the diver- sity of late Neanderthal mtDNA. An around two-fold coverage nuclear genome was later sequenced from one of those individuals (Goyet Q56-1) [2], revealing a high genetic similarity to other late Neanderthals that is well correlated to their geographical dis- tance. Analyzing modern human remains retrieved at Goyet, mtDNA genomes were initially reported for two specimens directly dated to the Aurignacian, five to the Gravettian, and one to the Magdalenian [3]. Aurignacian-related individuals were particu- larly intriguing as they were found to carry mtDNA haplogroup M, which is almost entirely absent in present-day Europeans. For Gravettian- to Magdalenian-related individuals, the shift from U2/U5 to U8 haplogroups was detected locally - as in other regions of Central Europe - likely influenced by the genetic bottleneck during the Last Glacial Maximum (LGM). Furthermore, nuclear sequences of five modern human individuals from Goyet were produced through genome-wide targeted enrichment [4] revealing local replacement between Aurignacian- and Gravettian-related populations. However, the genetic component associated with a 35,000-year-old individual (Goyet Q116-1) reappeared after the LGM, first in Spain and then in other European regions includ- ing in a Magdalenian-related individual from Goyet (Goyet Q-2). This individual was later found to be the best proxy for a genetic component that was largely displaced in Europe from around 14,000 years ago onwards while surviving in high proportion among Mesolithic individuals from Iberia [5]. Here we present new palaeogenetic data of Neanderthal and modern human individuals from this iconic site. First, we expand the molecular taxonomic identifications with three additional Neanderthal specimens and reconstruct their partial mtDNA genomes. Those confirm the general picture of a limited genetic diversity for late Neanderthals, which is also apparent among the Goyet Neanderthals. Second, working on modern human remains, we produced new mtDNA and nuclear data from four Gravettian specimens. They belong to mtDNA haplogroups U2 and U5, further extending the observa- tion of both mtDNA types being largely present in pre-LGM Europe. Moreover, their nuclear genomes provide additional evidence for the genetic affinity between Gravettian-related groups across Europe, from the present-day regions of the Czech Republic to Belgium and Southern Italy. In conclusion, the deep temporal range covered by the human remains from the Troisième caverne of Goyet provides the unique opportunity to describe within a single archaeological site the major genetic transformations that took place in Europe throughout the Middle and Upper Palaeolithic.
-
New Neandertal remains from Trou Magrite, Belgium
- Trou Magrite is a cave site located at Pont-à-Lesse in the Lesse Valley, commune of Dinant, Belgium. It has been known since E. Dupont conducted excavations at the site in 1867 [1]. The most recent fieldwork was done by L. Straus and M. Otte in 1991-92 [2]. Trou Magrite yielded rich lithic assemblages, osseous artifacts, mobiliary art, and numerous faunal remains. Several human re- mains were also recovered and identified as Palaeolithic humans by E. Dupont but have been only partially published thus far. The archaeological record covers a broad time range spanning from the Middle and Upper Palaeolithic to the Mesolithic, Neolithic, and Iron Age. An important Middle Palaeolithic collection is present, probably representing several occupation phases during the Late Pleistocene [2]. Unfortunately, although E. Dupont conducted excavations that can be characterized as modern for that time, the materials from the different so-called “fauna-bearing levels” that he defined in the field were mixed post-excavation [3]. In 2015, we initiated a multidisciplinary re-assessment of the human and faunal collections from Trou Magrite in order to update the inven- tory of human remains already identified, check for the presence of human remains that may have been previously overlooked, and verify their chronocultural context. We revised the already known human collection, conducted a systematic sorting of the faunal material, and combined the use of morphometrics, taphonomy, stable isotopes, dating, and genetic analyses to perform taxonomic and chronocultural identifications. Here we present two previously unidentified Neandertal fossils that we isolated from the Trou Magrite faunal material excavated by E. Dupont in the 19th century. They represent two different individuals: an adult/adolescent, represented by an upper right permanent canine, and a neonate, represented by the diaphysis of a left femur. Whereas no endoge- nous DNA was recovered from the tooth, the palaeogenetic analyses of the neonate femur confirmed its Neandertal status and indicate its sex to be male. We will present the biological characteristics and mitochondrial DNA phylogenetic position of the Trou Magrite Neandertals, in particular with regard to the other Northern European Neandertals. Our project adds Trou Magrite to the list of Belgian sites that have yielded Neandertal fossils and helps to emphasize the importance of the Mosan Basin in Neandertal studies.
-
When diet became diverse: Isotopic tracking of subsistence strategies among Gravettian hunters in Europe
- Subsistence strategies are key paleoecological features of Paleolithic hunter-gatherers and their deeper understanding provides crit- ical insights into essential aspects of human evolution. In this study, we discuss new collagen stable isotopic values (C, N, S) rep- resenting seven Gravettian individuals from the Troisième caverne of Goyet in Belgium. The dietary strategies of the Gravettian humans from Goyet are in line with the general trends observed among Western European Gravettian populations. These pop- ulations show both a low intake of mammoth and a high consumption of other terrestrial mammals as well as aquatic resources, such as at the sites Arene Candide and La Rochette. This is different for more eastern Gravettian hunter-gatherers, for example in Kostenki, Brno-Francouzska, Mal’ta, Předmostí, and Dolní Věstonice where the dietary contribution of mammoth meat was sig- nificantly higher. The stable isotopic data of the Gravettian humans from Goyet indicate that their dietary ecology was essentially based on terrestrial resources like reindeer, horse, and, to a lesser extent, mammoth. However, they yielded δ15N values that are substantially lower than those of the earlier modern humans and Neandertals from the same site [1-2]. We hypothesize that the Gravettian humans had much less mammoth in their diet than all earlier humans from the same region. It was previously shown that in northwestern Europe a decline of mammoth, a key prey species, could already be detected at the onset of the Upper Paleolithic [2]. This trend appears to continue into the Gravettian, despite the persistence of the typical mammoth ecological niche, which is represented by a grassland with high δ15N values. Interestingly, through isotopic analysis, we are able to track the spread of the horse from the local ecosystem (represented by specimens from Walou Cave, Belgium) into this niche now under-occupied by the mammoth. Radiocarbon dates obtained from several mammoth skeletal remains from the Troisième caverne of Goyet showed that this megaherbivore was indeed part of the ecosystem during pre-LGM periods. However, from the Gravettian in Goyet and the surrounding region we have only one mammoth specimen represented by a long bone, and interestingly, its sulphur isotopic signal indicates that this individual was not of local origin. We propose that the local mammoth population was under intensive hunting pressure or may even have been no longer present in the region. Instead, single individuals from other regions may have made it into the area and ended up as prey animals. While the δ15N values of all Goyet Gravettian humans are relatively homogeneous, their δ13C values are variable. This indicates significant dietary differences among the seven individuals, an observation that has not been described before for hunter-gatherers pre-dating the Gravettian. The human δ34S values also support substantial differences in life mobility history between different individuals, which were not observed for the Goyet Neandertals. The result that different mem- bers of the same chrono-group had various individual mobility histories has implications for land use procurement strategies of those hunter-gatherer groups. In conclusion, our new isotopic results demonstrate a broad ecological flexibility among Gravettian humans, which can be seen in different human ecosystem interactions across Europe. The Goyet individuals contribute substan- tially to a more complete understanding of hunter-gatherer’s ecology during this particular phase of the European Late Pleistocene. Our study shows that the Gravettian cannot be depicted as a uniform entity from an ecological perspective. It instead indicates that during this period, and not earlier, both inter- and intra-group diversity in subsistence strategies can be tracked through stable isotopic analysis.
-
Les restes d'animaux
-
Een verdachte hondshaai in de Crezéepolder
-
Large old tropical trees as keystone biodiversity structures: the Life on Trees program
- Association for Tropical Biology and Conservation annual meeting https://www.atbc2024.org Large old tropical trees as keystone biodiversity structures: the Life on Trees program Leponce Maurice1, Basset Yves2, Aristizábal-Botero Ángela1, Albán Castillo Joaquina3, Aguilar Rengifo Guillermo4, Barbut Jérôme5, Buyck Bart5, Butterill Phil6, Calders Kim7, Carrias Jean-François8, Catchpole Damien9, D’hont Barbara7, Delabie Jacques10, Drescher Jochen11, Ertz Damien12, Heughebaert André13, Hofstetter Valérie14, Leroy Céline15, Leveque Antoine16, Macedo Cuenca Victor4, Melki Frédéric17, Michaux Johan18, Ocupa Horna Luis19, Pillaca Huacre Luis3, Poirier Eddy20, Ramage Thibault21, Rougerie Rodolphe5, Rouhan Germinal5, Rufray Vincent17, Salas Guererro Marcos4, Scheu Stefan11, Schmidl Jürgen22, Silva Dávila Diana3, Valenzuela Gamarra Luis23, Vanderpoorten Alain18, Villemant Claire5, Youdjou Nabil1, Pascal Olivier17 1 Royal Belgian Institute of Natural Sciences, Vautier st. 29, Brussels, 1000, Belgium; 2 Smithsonian Tropical Research Institute, Panama; 3 Museo de Historia Natural, Universidad Nacional Mayor de San Marcos, Lima, Peru; 4 Servicio Nacional de Áreas Naturales Protegidas por el Estado, Ministerio del Ambiente, Peru; 5 Muséum national d'Histoire naturelle, Paris, France; 6 Biology Centre, Czech Academy of Sciences, České Budějovice,Czech Republic; 7 Ghent University, Belgium; 8 Université Clermont-Auvergne, Clermont-Ferrand, France; 9 Independent Consultant, Lima, Peru; 10 Centro de Pesquisas do Cacau – CEPEC, Itabuna, Brasil; 11 Göttingen University, Germany; 12 Meise Botanic Garden, Belgium; 13 Belgian Biodiversity Platform, Brussels, Belgium; 14 AGROSCOPE, Nyon, Switzerland; 15 AMAP (Univ. Montpellier, CIRAD, CNRS, INRAE, IRD), Montpellier, France; 16 PatriNat (OFB-CNRS-MNHN), Paris, France; 17 Fonds de Dotation Biotope Pour La Nature, Mèze, France; 18 Université de Liège, Belgique; 19 Centro de Investigación en Biología Tropical y Conservación, Piura, Perú ; 20 Independent entomologist, Cayenne, Guyane ; 21 Independent entomologist, Concarneau, France ; 22 Universität Erlangen-Nürnberg, Germany. ; 22 Jardín Botánico de Missouri, Peru E-mail: (presenting author): mleponce@naturalsciences.be The aim of the Life on Trees (LOT, www.lifeontrees.org) program is to generate baseline knowledge about the number of eukaryotic species that a single large mature tropical tree can host and to understand how these communities of organisms are assembled. The program is being undertaken in the Andean Amazon biodiversity hotspot. Our first project, LOT01 in the Andean foothills in 2022, located at 400m a.s.l., involved the study of a spectacular Dussia tessmannii tree (Fabaceae), towering at 50 meters in height and 45m wide. Our second project, LOT02 in the Andes in 2023, at 2450m a.s.l., focused on a 32-meter-tall Ficus americana subsp. andicola. Surveys were carried out by professional climbers, guided by experts of the different eukaryotic groups studied (plants, fungi, animals, protists). To better understand the contribution of different tree components (bark, leaves, fruits, flowers, living and dead wood) to overall tree biodiversity, we partitioned observations into communities based on vertical strata or microhabitat and will examine similarities and nestedness in the composition of these communities. Initial findings indicate that significant diversity is harbored by the individual tree at both locations (e.g., LOT01 vs LOT02: 42 vs 114 orchid species, 28 vs 28 fern species, 200+ vs 300+ bryophyte species, and 180 vs 100+ lichen species identified). These figures set world records for their respective elevations. This confirms that large old tropical trees are important pools of biodiversity, probably related to the variety of local microhabitats and tree age.
-
Unveiling the above-ground eukaryotic diversity supported by individual large old trees : the “Life on Trees” integrative protocol
- Large tropical trees are rightly perceived as supporting a plethora of organisms. However, baseline data about the variety of taxa coexisting on single large tropical trees are lacking and prevent a full understanding of both the magnitude of biodiversity and the complexity of interactions among organisms in tropical rainforests. The two main aims of the research program “Life on Trees” (LOT) are (1) to establish baseline knowledge on the number of eukaryote species supported/hosted by the above-ground part of a single tropical tree and (2) to understand how these communities of organisms are assembled and distributed on or inside the tree. To achieve the first goal, we integrated a set of 36 methods for comprehensively sampling eukaryotes (plants, fungi, animals, protists) present on a tropical tree. The resulting LOT protocol was conceived and implemented during projects in the Andean Amazon region and is proposed here as a guideline for future projects of a similar nature. To address the second objective, we evaluated the microclimatic differences between tree zones and tested state-of-the-art terrestrial laser scanning (TLS) and positioning technologies incorporating satellite and fixed base station signals (dGNSS). A marked variation in temperature and relative humidity was detected along a 6-zones Johansson scheme, a tree structure subdivision system commonly used to study the stratification of epiphytic plants. Samples were collected from these six zones, including three along the trunk and three in the canopy. To better understand how different tree components (e.g., bark, leaves, fruits, flowers, dead wood) contribute to overall tree biodiversity, we categorized observations into communities based on Johansson zones and microhabitats. TLS was an essential aid in understanding the complex tree architecture. By contrast, the accuracy of positioning samples in the tree with dGNSS was low. Comprehensively sampling the biota of individual trees offers an alternative to assessing the biodiversity of fewer groups of organisms at the forest scale. Large old tropical trees provide a wealth of microhabitats that encompass a wide range of ecological conditions, thereby capturing a broad spectrum of biodiversity.
-
Contribution of omnidirectional flight traps to assess the ant (Hymenoptera: Formicidae) diversity in an agroforestry system.
-
Canopy laser scanning to study the complex architecture of large old trees
- Canopy laser scanning to study the complex architecture of large old trees Barbara D'hont1 , Professor Kim Calders1 , Professor Alexandre Antonelli6 , Dr. Thomas Berg7 , Dr. Karun Dayal1 , Dr. Leonard Hambrecht5 , Dr. Maurice Leponce2,3, Prof. Arko Lucieer5 , Olivier Pascal4 , Professor Pasi Raumonen8, Professor Hans Verbeeck1 1Q-ForestLab, Department of Environment, Ghent University, Ghent, Belgium, 2Royal Belgian Institute of Natural Sciences, Brussels, Belgium, 3Université Libre de Bruxelles, Brussels, Belgium, 4Fonds de Dotation Biotope Pour La Nature, France, 5School of Geography, Planning, and Spatial Sciences, University of Tasmania, , Australia, 6Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom, 7ARAÇÁ Project, Nova Friburgo, Rio de Janeiro, Brazil, 8Faculty of Information Technology and Communication Sciences, Tampere University, Tampere, Finland Large trees are keystone structures providing multiple ecosystem functions in forests all around the world: they disproportionately contribute to forest biomass and biodiversity. Large trees can have an extremely complex structure, housing many epiphytes on their stem and branches. High point-density 3D point clouds, in which leaves and epiphytes in the tree can be distinguished, are useful to make the link between the distribution of organisms on the tree, the tree architecture and its microclimate. In addition, a comprehensive branching model can improve above ground biomass (AGB) estimates. Highly detailed, complete point clouds of large trees are, however, exceptionally difficult to derive. With terrestrial laser scanning, the state-of-the-art method to capture 3D tree structure, the plant material blocks the view of (or, occludes) the top part of the dense crown. Drone or airborne laser scanning data on the other hand, lacks detail in the subcanopy. Combining these two methods minimises occlusion; however, increased distance from the tree to the scanner still leads to a relatively low resolution of the canopy point clouds. To improve the level of precision of the tree point clouds, we introduce a new concept, called canopy laser scanning (CLS). With CLS, a laser scanner is operated statically inside the tree canopy, reducing the distance between the area of interest and the instrument. We lifted a high-end laser scanner (RIEGL vz-400(i)) inside the canopy of six large emergent trees. Four of these trees are located in different types of tropical rainforests in Colombia, Brazil and Peru. They are part of biodiversity programs in which organisms and their spatial distributions are studied (Life On Trees, Araçá). The two other trees are famous giants located in the wet temperate eucalypt forests of southern Tasmania. We will present the practical aspects of CLS, evaluate the extra value of using canopy scans, looking at occlusion and point cloud precision, estimate epiphyte cover and AGB. We demonstrate that canopy laser scanning opens up new opportunities in sciences in which multi-disciplinary teams perform in depth research on large individual trees.
-
Biodiversity research and monitoring related capacities in Kisangani (DRC)
-
Towards less invasive methods to inventory and monitor wildlife in the Congo Basin
-
Phenotypic plasticity of feeding performance as a response to diet in cichlids: suction verus biting.
-
Phenotypic plasticity of feeding performance as a responce to diet in cichlids: suction versus biting
-
Miscellanea Herpetologica Gabonica VII
- We present new Gabonese locality records, ecological data or unpublished museum material for Crocodylus niloticus (Crocodylidae), Trionyx triunguis (Trionychidae), Agama lebretoni (Agamidae), Hemidactylus fasciatus and H. mabouia (Gekkonidae), Gastropholis echinata (Lacertidae), Trachylepis albilabris (Scincidae), Afrotyphlops angolensis (Typhlopidae), Dipsadoboa viridis, Hapsidophrys smaragdinus, Toxicodryas pulverulenta (Colubridae), Naja melanoleuca (Elapidae), Lamprophis olivaceus, Psammophis cf. phillipsii (Lamprophiidae), Natriciteres fuliginoides (Natricidae), Causus lichtensteinii and C. maculatus (Viperidae). We document predation cases by Hapsidophrys smaragdinus on Hemidactylus mabouia and Trachylepis albilabris, by Naja melanoleuca on Sclerophrys regularis (Anura: Bufonidae) and by Psammophis cf. phillipsii on Phrynobatrachus auritus (Anura: Phrynobatrachidae), and consumption of Arius latiscutatus (Siluriformes: Ariidae) and Tragelaphus spekii (Cetartiodactyla: Bovidae) by Crocodylus niloticus. We add one, two and one snake species, respectively, to Estuaire, Moyen-Ogooué and Nyanga provinces’ reptile lists. We add four reptile species to the list for Wonga-Wongué Presidential Reserve. We refer all records of Agama agama in Gabon to A. picticauda.
-
Ammonoids and anoxia from the Belgian Frasnian: the Carrière de Lompret section
-
A double whammy for dinosaurs and ammonites: fake news or the real deal
-
Bedforms as Benthic Habitats: Living on the Edge, Chaos, Order and Complexity
- Bedforms as benthic habitats are studied increasingly as acquisition and analysis of acoustic data improve in capturing, visualizing and quantifying terrain variables on various scales. However, feedback mechanisms between geomorphology and benthos are not always clear and complexity increases where humans also affect the benthos-landscape relationship. Based on research-oriented seabed mapping along the Belgian part of the North Sea (BPNS), a synthesis is provided on where increased biodiversity has been observed in relation to active bedforms.
-
Building a 4D Voxel-Based Decision Support System for a Sustainable Management of Marine Geological Resources
- For sustainable management of marine geological resources, a geological knowledge base is being built for the Belgian and southern Netherlands part of the North Sea. Voxel models of the subsurface are used for predictions on sand and gravel quantities and qualities, to ensure long-term resource use. The voxels are filled with geological data from boreholes and seismic lines, but other information can be added also. The geology provides boundary conditions needed to run environmental impact models that calculate resource depletion and regeneration under various scenarios of aggregate extraction. Such analyses are important in monitoring progress towards good environmental status, as outlined in the Marine Strategy Framework Directive. By including uncertainty, data products can be generated with confidence limits, which is critical for assessing the significance of changes in the habitat or in any other resource-relevant parameter. All of the information is integrated into a cross-domain, multi-criteria decision support system optimised for user-friendliness and online visualisation.
-
Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition
- Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
-
Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species (vol 124, pg 561, 2016)