Skip to content. | Skip to navigation

Personal tools

You are here: Home / Library / RBINS Staff Publications 2022 OA / From the ashes: a new project on the evolution and overturn of marine and terrestrial ecosystems through the early Paleogene of northwestern Europe

Johan Vellekoop (2022)

From the ashes: a new project on the evolution and overturn of marine and terrestrial ecosystems through the early Paleogene of northwestern Europe

In: 12th International Conference on Climatic and Biotic Events of the Paleogene, Conference Program and Abstracts, pp. 47-47.

The Paleogene Period can be considered the cradle of modern marine and terrestrial ecosystems (e.g. Krug et al., 2009; Field et al,. 2018). After global catastrophe at the K-Pg boundary, life recovered and repopulated marine and terrestrial ecosystems (Vellekoop et al., 2017; Lowery et al., 2018; Lowery et al., 2019; Vellekoop et al., 2020), eventually heralding the establishment of the rich and diverse modern marine and terrestrial ecosystems (Krug et al., 2009; Field et al., 2018). It has been suggested the crucial biotic evolution and overturn during the Paleogene was at least partly driven by the climatic evolution across this time interval (e.g. Widlansky et al., 2021). For example, the PETM (56 Ma) likely was key in reshaping the biosphere (Smith et al., 2020). During this hyperthermal, the first representatives of modern mammal orders (e.g., primates, artiodactyls, perissodactyls) suddenly spread over all northern continents, while marine ecosystems are characterized by marked extinctions, radiations and migrations (Gibbs et al., 2012; Speijer et al., 2012). Nevertheless, the evolutionary importance of other warming pulses (e.g., Eocene Thermal Maximum 2 or ETM-2) or the gradual climate trends towards the EECO remains unclear for most fossil groups. For northwestern Europe, terrestrial faunas appear to have been almost consistently in a dynamic state across this time interval, strongly influenced by dispersal events. In contrast to the PETM, the exact timing and paleogeographic conditions remain poorly constrained for post-PETM warming pulses, as only tentative chronological correlation with the Paleogene global temperature curves are established. Therefore, we have initiated a new collaborative project, aimed at creating (1) a better chronostratigraphic framework of Paleogene bioevents among vertebrates, by detailed study of marine and terrestrial strata containing, or interfingering with, vertebrate-rich beds in NW Europe, and (2) generating a better understanding the role of climate change on biotic evolution and overturns during the Early Paleogene, from both a marine and terrestrial perspective.
Abstract of an Oral Presentation or a Poster
Europe, Ecosystems, biodiversity., Paleontology
  • PURL: https://www.marum.de/Forschung/Climatic