Skip to content. | Skip to navigation

Personal tools

You are here: Home
1147 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Webpublished Reference Walvissen uit het Waasland
Located in Library / RBINS Staff Publications
Techreport Reference Turbine size impacts the number of seabird collisions per installed megawatt and offers possibilities for mitigation.
As the offshore wind energy technology is rapidly progressing and because wind turbines at sea have a relatively short life span, repowering scenarios are already being discussed for the oldest wind farms. Ongoing developments result in larger wind turbines and an increased open airspace between turbines. Despite taller towers having larger rotor swept zones and therefore a higher collision risk area compared to smaller-sized turbines, there is increasing evidence that fewer but larger, more power-efficient turbines may have a lower collision rate per installed megawatt. As such, turbine size can offer an opportunity to mitigate seabird fatalities by increasing the clearance below the lower rotor tip. We assessed the seabird collision risk for a hypothetical repowering scenario of the first offshore wind farm zone in Belgian waters with larger turbines and the effect of an additional increase in hub height on that theoretical collision risk. For all species included in this exercise, the estimated collision risk decreased in a repowering scenario with 15 MW turbines (40.4% reduction on average) because of higher clearance between the lower tip of the turbine rotor and the sea level, and the need for a lower number of turbines per km². Increasing the hub height of those 15 MW turbines with 10 m, further decreases the expected number of seabird collisions with another 37% on average. However, terrestrial birds and bats also migrate at sea and the effect of larger turbines on these taxa is less clear. Possibly even more terrestrial birds and bats are at risk of collision compared to the current turbines. So, while larger turbines and increasing the hub height can be beneficial for seabirds, this likely needs to be applied in combination with curtailment strategies, which stop the turbines during heavy migration events, to reduce the impact on other species groups.
Located in Library / RBINS Staff Publications 2022
Article Reference A case of predation by Naja samarensis (Elapidae) on Cyclocorus nuchalis nuchalis (Lamprophiidae) on Mindanao Island, Philippines
Located in Library / RBINS Staff Publications 2020
Article Reference Observations on the reproductive biology of Laurentophryne parkeri (Laurent, 1950) based on the holotype
Located in Library / RBINS Staff Publications 2017
Article Reference chemical/x-molconn-Z Regional differences in vertebral shape along the axial skeleton in caecilians (Amphibia: Gymnophiona)
Abstract Caecilians are elongate, limbless and annulated amphibians that, as far as is known, all have an at least partly fossorial lifestyle. It has been suggested that elongate limbless vertebrates show little morphological differentiation throughout the postcranial skeleton. However, relatively few studies have explored the axial skeleton in limbless tetrapods. In this study, we used ?CT data and three-dimensional geometric morphometrics to explore regional differences in vertebral shape across a broad range of caecilian species. Our results highlight substantial differences in vertebral shape along the axial skeleton, with anterior vertebrae being short and bulky, whereas posterior vertebrae are more elongated. This study shows that despite being limbless, elongate tetrapods such as caecilians still show regional heterogeneity in the shape of individual vertebrae along the vertebral column. Further studies are needed, however, to understand the possible causes and functional consequences of the observed variation in vertebral shape in caecilians.
Located in Library / RBINS Staff Publications 2022
Article Reference Is vertebral shape variability in caecilians (Amphibia: Gymnophiona) constrained by forces experienced during burrowing?
Caecilians are predominantly burrowing, elongate, limbless amphibians that have been relatively poorly studied. Although it has been suggested that the sturdy and compact skulls of caecilians are an adaptation to their head-first burrowing habits, no clear relationship between skull shape and burrowing performance appears to exist. However, the external forces encountered during burrowing are transmitted by the skull to the vertebral column, and, as such, may impact vertebral shape. Additionally, the muscles that generate the burrowing forces attach onto the vertebral column and consequently may impact vertebral shape that way as well. Here, we explored the relationships between vertebral shape and maximal in vivo push forces in 13 species of caecilian amphibians. Our results show that the shape of the two most anterior vertebrae, as well as the shape of the vertebrae at 90% of the total body length, is not correlated with peak push forces. Conversely, the shape of the third vertebrae, and the vertebrae at 20% and 60% of the total body length, does show a relationship to push forces measured in vivo. Whether these relationships are indirect (external forces constraining shape variation) or direct (muscle forces constraining shape variation) remains unclear and will require quantitative studies of the axial musculature. Importantly, our data suggest that mid-body vertebrae may potentially be used as proxies to infer burrowing capacity in fossil representatives.
Located in Library / RBINS Staff Publications 2022
Booklet Reference Livret-guide de l’excursion géologique dans la vallée du Hoyoux (Belgique) pour les membres de la Société Géologique du Nord. Institut royal des Sciences naturelles de Belgique, Bruxelles, 22 p.
Located in Library / RBINS Staff Publications
Article Reference Two new atrypid brachiopod species from the late Frasnian of Belgium
Located in Library / RBINS Staff Publications
Article Reference The genus Biernatella Baliński, 1977 (Brachiopoda) from the late Frasnian of Belgium
Located in Library / RBINS Staff Publications
Article Reference The genus Iowatrypa Copper, 1973 (Brachiopoda) in the Les Valisettes Formation (late Frasnian of the Philippeville Anticlinorium, southern Belgium)
Located in Library / RBINS Staff Publications