-
A review of Stenostylus Pilsbry, 1898 and Drymaeus Albers, 1850 (Mollusca: Gastropoda: Orthalicoidea: Bulimulidae) from Colombia, with description of new species
-
Located in
Library
/
RBINS Staff Publications 2019
-
A review of the present-day Australian species of the gastropod subgenus Rissoina (Rissolina) (Rissooidea: Rissoinidae) with descriptions of two new species
-
Located in
Library
/
RBINS Staff Publications 2023 OA
-
A review of the Rissoinidae and Zebinidae (Caenogastropoda, Littorinimorpha) from the Circumarabian Seas, with the description of six new species
-
Located in
Library
/
RBINS Staff Publications 2024
-
A Santonian record of the nautilid cephalopod Angulithes westphalicus (Schlüter, 1872) from the subsurface of the Campine, north-east Belgium, with comments on regional lithostratigraphic problems
-
Newly recognised material of the Late Cretaceous nautilid Angulithes westphalicus is described from the subsurface of the eastern part of the Campine in north-east Belgium. This constitutes the first formal documentation of this genus and species from the Cretaceous of Belgium, having been identified amongst a large suite of fossils collected from the Voort Shafts I & II of the Zolder colliery during the first half of the twentieth century. The specimens originate from an interval of marine calcareous sand with a marly glauconiferous base, dated as late middle Santonian (Gonioteuthis westfalicagranulata belemnite Zone) and for which a deepening of the depositional environment is documented. Lithostratigraphically, the specimens occur within the Vaals Formation, within the upper part of the Asdonk Member or alternatively within the lower part of the Sonnisheide Member. The early Campanian age of the Asdonk Member suggested previously is refuted, the age of the Sonnisheide Member needs further study. The position of the siphuncle in A. westphalicus is illustrated for the first time; it is positioned closer to the venter than the dorsum, which confirms the close evolutionary relationship with Angulithes galea, which ranges from the upper Turonian to middle Coniacian in central Europe.
Located in
Library
/
RBINS Staff Publications 2023
-
A spectacular new species of Hexaplex Perry, 1811 (Gastropoda: Muricidae: Muricinae) from the Philippine Islands
-
Located in
Library
/
RBINS Staff Publications 2023 OA
-
A stable reference area for multibeam bathymetry and backscatter: KWINTE, a dedicated quality control area in the Belgian North Sea
-
Located in
Library
/
RBINS Staff Publications 2021 OA
-
A strikingly coloured new species of Hemisphaerius Schaum, 1850 from Thailand (Hemiptera: Fulgoromorpha: Issidae)
-
Located in
Library
/
RBINS Staff Publications 2020
-
A subfossil spirostreptid millipede from SW Libya (Diplopoda, Spirostreptida, Spirostreptidae)
-
Two fragments of millipedes, referred to the genus Archispirostreptus, are reported from an archaeological site in the Tadrart Acacus region of southwestern Libya. Radiocarbon dating of the specimens shows that one of them dates to between ca. 9100 and 8800 years ago, and the other one between 6400 and 6300 years ago (calibrated dates). The site lies far from known present-day occurrences of spirostreptid millipedes, and the Libyan subfossils probably, like other isolated occurrences of Archispirostreptus species in the Sahara and the Middle East, represent geographical relicts of a former, continuous distribution. The millipedes were probably able to survive at the Libyan site during the early and middle Holocene periods thanks to the more humid conditions, and may descend from animals that initially colonised the area during the even more humid, and longer, last interglacial period.
Located in
Library
/
RBINS Staff Publications 2020
-
A Tale of Three Oceans — Taxonomy of the Holothuria (Thymiosycia) arenicola Semper, 1868 complex (Echinodermata: Holoturoidea: Holothuriidae)
-
The ubiquitous sea cucumber Holothuria (Thymiosycia) arenicola Semper, 1868, externally characterized by a double row of dark blotches of various sizes on its dorsal body wall and a cryptic behaviour, is generally assumed to have a wide tropical distribution, although it has not been reported from the Eastern tlantic. Careful morphological examination, with emphasis on the ossicle assemblage, of type and non-type H. arenicola specimens sampled in the Indian, Pacific and tlantic Ocean, its subjective synonyms and species with a similar colouration and habit, revealed that H. arenicola is often confused with other species. This paper formally separates the different species in the H. arenicola complex, one of them being a species new to science: Holothuria (Thymiosycia) kerriensis sp. nov. dditionally, we describe two other species that are often confused with H. arenicola: Holothuria (Lessonothuria) gracilis Semper, 1868 and H. (Thymiosycia) strigosa Selenka, 1867. The H. arenicola complex per se is keyed-out, with the ossicle assemblage of the musculature being recognised as an important, previously largely neglected, guide. This contribution highlights the importance of building and curating well-maintaned natural history collections to understand biodiversity through time and space.
Located in
Library
/
RBINS Staff Publications 2024
-
A tardigrade in Dominican amber
-
Tardigrades are a diverse group of charismatic microscopic invertebrates that are best known for their ability to survive extreme conditions. Despite their long evolutionary history and global distribution in both aquatic and terrestrial environments, the tardigrade fossil record is exceedingly sparse. Molecular clocks estimate that tardigrades diverged from other panarthropod lineages before the Cambrian, but only two definitive crown-group representatives have been described to date, both from Cretaceous fossil deposits in North America. Here, we report a third fossil tardigrade from Miocene age Dominican amber. Paradoryphoribius chronocaribbeus gen. et sp. nov. is the first unambiguous fossil representative of the diverse superfamily Isohypsibioidea, as well as the first tardigrade fossil described from the Cenozoic. We propose that the patchy tardigrade fossil record can be explained by the preferential preservation of these microinvertebrates as amber inclusions, coupled with the scarcity of fossiliferous amber deposits before the Cretaceous.
Located in
Library
/
RBINS Staff Publications 2021 OA