Skip to content. | Skip to navigation

Personal tools

You are here: Home
1498 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Ostracod valves as efficient UV protection.
Located in Library / RBINS Staff Publications
Article Reference Ostracodes et lithologie du stratotype de la Formation du Mont d'Haurs (Givétien, Synclinorium de Dinant)
Located in Library / RBINS Staff Publications
Article Reference Ostracods, rock facies and magnetic susceptibility of the Trois-Fontaines and Terres d'Haurs Formations (Early Givetian) in the Rancennes quarry at Mont d'Haurs (Givet, France)
Located in Library / RBINS Staff Publications
Article Reference Oupeye/Hermalle-sous-Argenteau : évaluation archéologique et étude géologique du lieu-dit "Au Buisson".
Located in Library / RBINS Staff Publications
Article Reference Oxyarietites boletzkyi n.gen., n.sp., nouveau genre et nouvelle espèce d’ammonite dans le Sinémurien inférieur de Bourgogne (France) : un rare précurseur des morphologies oxycônes pour le Jurassique.
L’une des toutes premières ammonites à coquille presque oxycône observée dans les séries fossilifères après la crise faunique de la limite Trias/Jurassique est décrite. Elle provient du Sinémurien inférieur (chronozone à Semicostatum ou à Turneri) de Bourgogne (Mavilly-Mandelot, Côte-d’Or, France). Cette nouvelle forme, Oxyarietites boletzkyi n. gen., n. sp., possède une coquille involute, comprimée et carénée dont le type clairement suboxycône est nouveau pour le Sinémurien inférieur. En raison de son aire ventrale carénée, ce taxon se rattache probablement à la super-famille des Arietitoidea Hyatt, 1875 sensu Guex (1995) mais son attribution familiale est incertaine et son origine évolutive reste énigmatique. Outre son intérêt taxonomique, cette découverte est importante car elle pose le problème de la valeur adaptative des caractères liés à la géométrie des coquilles d’ammonites. Il est actuellement admis que les coquilles involutes, comprimées et carénées de type suboxycône et oxycône favorisent significativement l’hydrodynamisme et donc la mobilité des espèces qui les possèdent. Il est surprenant que l’acquisition de ce probable avantage adaptatif n’ait pas favorisé l’implantation au sein des peuplements du nouveau taxon, qui reste une forme rare. Dans tous les cas, la découverte d’O. boletzkyi n. gen., n. sp. rajeunit d’environ 2 millions d’années la mise en place des morphologies oxycônes au cours de la phase de reconstitution de la biodiversité post-crise Trias/Jurassique. Oxyarietites boletzkyi n.gen., n. sp., a new genus and species of ammonite for the Lower Sinemurian of Burgundy (France): a rare forerunner of the oxycone morpho­logies for the Jurassic. One of the very first quasi-oxycone ammonites following the Triassic/Jurassic boundary crisis is described. It was collected from the fossiliferous Lower Sinemurian (Semicostatum or Turneri Chronozone) strata of Burgundy (Mavilly-Mandelot, Côte-d’Or, France). The new taxon, Oxyarietites boletzkyi n. gen., n.sp., possesses an involute, compressed and keeled shell of suboxycone morphology, a shell type previously unknown for the Lower Sinemurian. The discovery makes younger by about 2 Ma the emergence of keeled (sub)oxycone shells following the Triassic/Jurassic boundary crisis. Its obviously keeled ventral area allows a probable assignation to the Arietitoidea Hyatt, 1875 sensu Guex (1995) superfamily, but family level assignation and its evolutionary origin remain obscure. Although, it is generally accepted that involute, compressed and keeled suboxycone and oxycone ammonite shells possess the best hydrodynamical abilities and mobility, the acquisition of this probable adaptive advantage in O. boletzkyi n. gen., n. sp. does not go together with abundancy in the fossil record.
Located in Library / RBINS Staff Publications
Article Reference C header Palaeogenomic analysis of black rat (Rattus rattus) reveals multiple European introductions associated with human economic history
The distribution of the black rat (Rattus rattus) has been heavily influenced by its association with humans. The dispersal history of this non-native commensal rodent across Europe, however, remains poorly understood, and different introductions may have occurred during the Roman and medieval periods. Here, in order to reconstruct the population history of European black rats, we first generate a de novo genome assembly of the black rat. We then sequence 67 ancient and three modern black rat mitogenomes, and 36 ancient and three modern nuclear genomes from archaeological sites spanning the 1st-17th centuries CE in Europe and North Africa. Analyses of our newly reported sequences, together with published mitochondrial DNA sequences, confirm that black rats were introduced into the Mediterranean and Europe from Southwest Asia. Genomic analyses of the ancient rats reveal a population turnover in temperate Europe between the 6th and 10th centuries CE, coincident with an archaeologically attested decline in the black rat population. The near disappearance and re-emergence of black rats in Europe may have been the result of the breakdown of the Roman Empire, the First Plague Pandemic, and/or post-Roman climatic cooling.
Located in Library / RBINS Staff Publications 2022
Inproceedings Reference Palaeogenomic investigations at the Troisième caverne of Goyet, Belgium
The main excavations at the Troisième caverne of Goyet in Belgium were conducted by Edouard Dupont in 1868 who identified Palaeolithic human occupations later attributed to the Middle and Upper Palaeolithic. These are represented by an archaeologi- cal record that spans the Mousterian, Lincombian-Ranisian-Jerzmanowician, Aurignacian, Gravettian, and Magdalenian, and then extends into the Neolithic and historic periods. Due to the lack of detailed documentation of the excavated materials, their asso- ciation to a specific chronocultural context has been challenging. Morphometric and taphonomic analyses, combined with direct radiocarbon dating as well as isotopic and genetic analyses, were used to assign human remains to either late Neanderthals or an- cient modern humans from different chronocultural groups. In 2016 the first palaeogenetic investigation of Neanderthal specimens from Goyet was published [1]. Taxonomic assignment was confirmed by performing hybridization capture of the mitochondrial DNA (mtDNA) and later inspecting diagnostic mutations at nucleotide positions that distinguish modern humans from Nean- derthals. Moreover, a phylogenetic reconstruction placed seven nearly complete mtDNA sequences from Goyet within the diver- sity of late Neanderthal mtDNA. An around two-fold coverage nuclear genome was later sequenced from one of those individuals (Goyet Q56-1) [2], revealing a high genetic similarity to other late Neanderthals that is well correlated to their geographical dis- tance. Analyzing modern human remains retrieved at Goyet, mtDNA genomes were initially reported for two specimens directly dated to the Aurignacian, five to the Gravettian, and one to the Magdalenian [3]. Aurignacian-related individuals were particu- larly intriguing as they were found to carry mtDNA haplogroup M, which is almost entirely absent in present-day Europeans. For Gravettian- to Magdalenian-related individuals, the shift from U2/U5 to U8 haplogroups was detected locally - as in other regions of Central Europe - likely influenced by the genetic bottleneck during the Last Glacial Maximum (LGM). Furthermore, nuclear sequences of five modern human individuals from Goyet were produced through genome-wide targeted enrichment [4] revealing local replacement between Aurignacian- and Gravettian-related populations. However, the genetic component associated with a 35,000-year-old individual (Goyet Q116-1) reappeared after the LGM, first in Spain and then in other European regions includ- ing in a Magdalenian-related individual from Goyet (Goyet Q-2). This individual was later found to be the best proxy for a genetic component that was largely displaced in Europe from around 14,000 years ago onwards while surviving in high proportion among Mesolithic individuals from Iberia [5]. Here we present new palaeogenetic data of Neanderthal and modern human individuals from this iconic site. First, we expand the molecular taxonomic identifications with three additional Neanderthal specimens and reconstruct their partial mtDNA genomes. Those confirm the general picture of a limited genetic diversity for late Neanderthals, which is also apparent among the Goyet Neanderthals. Second, working on modern human remains, we produced new mtDNA and nuclear data from four Gravettian specimens. They belong to mtDNA haplogroups U2 and U5, further extending the observa- tion of both mtDNA types being largely present in pre-LGM Europe. Moreover, their nuclear genomes provide additional evidence for the genetic affinity between Gravettian-related groups across Europe, from the present-day regions of the Czech Republic to Belgium and Southern Italy. In conclusion, the deep temporal range covered by the human remains from the Troisième caverne of Goyet provides the unique opportunity to describe within a single archaeological site the major genetic transformations that took place in Europe throughout the Middle and Upper Palaeolithic.
Located in Library / RBINS Staff Publications 2019
Article Reference Palaeogenomics of Upper Palaeolithic to Neolithic European hunter-gatherers
Modern humans have populated Europe for more than 45,000 years1,2. Our knowledge of the genetic relatedness and structure of ancient hunter-gatherers is however limited, owing to the scarceness and poor molecular preservation of human remains from that period3. Here we analyse 356 ancient hunter-gatherer genomes, including new genomic data for 116 individuals from 14 countries in western and central Eurasia, spanning between 35,000 and 5,000 years ago. We identify a genetic ancestry profile in individuals associated with Upper Palaeolithic Gravettian assemblages from western Europe that is distinct from contemporaneous groups related to this archaeological culture in central and southern Europe4, but resembles that of preceding individuals associated with the Aurignacian culture. This ancestry profile survived during the Last Glacial Maximum (25,000 to 19,000 years ago) in human populations from southwestern Europe associated with the Solutrean culture, and with the following Magdalenian culture that re-expanded northeastward after the Last Glacial Maximum. Conversely, we reveal a genetic turnover in southern Europe suggesting a local replacement of human groups around the time of the Last Glacial Maximum, accompanied by a north-to-south dispersal of populations associated with the Epigravettian culture. From at least 14,000 years ago, an ancestry related to this culture spread from the south across the rest of Europe, largely replacing the Magdalenian-associated gene pool. After a period of limited admixture that spanned the beginning of the Mesolithic, we find genetic interactions between western and eastern European hunter-gatherers, who were also characterized by marked differences in phenotypically relevant variants.
Located in Library / RBINS Staff Publications 2023
Article Reference Palaeopathological and demographic data reveal conditions of keeping of the ancient baboons at Gabbanat el-Qurud (Thebes, Egypt)
Since predynastic times, baboons (Papio hamadryas and Papio anubis) were important in ancient Egypt for ritual and religious purposes. These species did not occur naturally in Egypt and therefore had to be imported, but little is known about their exact provenance and the conditions in which they were kept through time. Here, we analyse the skeletal remains of a collection of baboon mummies coming from Thebes (Egypt), representing a minimum of 36 individuals, from a palaeopathological and demographic point of view. The pathological cases are described, figured where relevant, and the discussion attempts to understand their aetiology. The prevalence of the different types of deformations and pathologies is compared with that of other captive baboon populations from more or less contemporary (Tuna el-Gebel and Saqqara) or older (predynastic Hierakonpolis) sites. This is combined with observations on the age and sex distribution and the proportion of hamadryas and anubis baboons to draw conclusions about the conditions of keeping, possible breeding on-site, provenance of the animals and the trade routes used for import. As in Tuna el-Gebel and Saqqara, the baboons from Gabbanat el-Qurud suffered from numerous metabolic diseases due to chronic lack of sunlight and an unbalanced diet. This and the demographic data suggest that there was a local breeding population derived from animals captured downstream from the Sudanese Nile Valley (for anubis) and from the Horn of Africa or the southern part of the Arabian Peninsula (for hamadryas). A new series of radiocarbon dates is provided, placing the baboons from Gabbanat el-Qurud between the end of the Third Intermediate Period and the beginning of the Late Period.
Located in Library / RBINS Staff Publications 2023
Inproceedings Reference Paleo-Pathological Studies at Pachacamac, Peru: Challenges and Preliminary Results
Located in Library / RBINS Staff Publications 2023 OA