Skip to content. | Skip to navigation

Personal tools

You are here: Home
2897 items matching your search terms.
Filter the results.
Item type


































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference The European Mesonychid Mammals: Phylogeny, Ecology, Biogeography, and Biochronology
Here we review the fossil record of European mesonychids, which are known only through the genera Dissacus and Pachyaena from Thanetian and Ypresian localities (from MP6 to MP10 reference-levels). We describe two new species, Dissacus rougierae, sp. nov., and Dissacus raslanloubatieri, sp. nov., respectively from Palette (Ypresian, ≈MP7) and from La Borie (Ypresian, ≈MP8 + 9). We also describe new specimens of D. europaeus from Berru (Thanetian, ≈MP6). The evolution of the geographic distribution of the European mesonychids is characterized by three phases: (1) the mesonychid Dissacus appeared in Europe during the Thanetian (≈ 57–58 Mya), probably due to dispersal from North America; D. europaeus survived the PETM event (≈ 56 Mya) and possibly experienced a dwarfism; (2) the large mesonychid Pachyaena migrated into Europe shortly after the Paleocene-Eocene boundary (≈ 55 Mya), but it was restricted to northwestern Europe, while Dissacus is recorded at this time only in southwestern Europe (Palette); and (3) Pachyaena rapidly disappeared from European environments, while Dissacus subsequently dispersed into northwestern Europe (≈ 54–52 Mya). We performed phylogenetic analyses in order to identify the relationships of the new species among mesonychids. It seems that the mesonychids went through two radiative events: the first during the Paleocene, the second mostly during the early Eocene. The first one corresponds to the diversification of Dissacus, while the latter resulted in the appearance of the most specialized mesonychids, such as Pachyaena and Mesonyx.
Located in Library / RBINS Staff Publications 2017
Article Reference Cryptic diversity and ecosystem functioning: a complex tale of differential effects on decomposition
Marine ecosystems are experiencing accelerating population and species loss. Some ecosystem functions are decreasing and there is growing interest in the link between biodiversity and ecosystem functioning. The role of cryptic (morphologically identical but genetically distinct) species in this biodiversity-ecosystem functioning link is unclear and has not yet been formally tested. We tested if there is a differential effect of four cryptic species of the bacterivorous nematode Litoditis marina on the decomposition process of macroalgae. Bacterivorous nematodes can stimulate or slow down bacterial activity and modify the bacterial assemblage composition. Moreover, we tested if interspecific interactions among the four cryptic species influence the decomposition process. A laboratory experiment with both mono- and multispecific nematode cultures was conducted, and loss of organic matter and the activity of two key extracellular enzymes for the degradation of phytodetritus were assessed. L. marina mainly influenced qualitative aspects of the decomposition process rather than its overall rate: an effect of the nematodes on the enzymatic activities became manifest, although no clear nematode effect on bulk organic matter weight loss was found. We also demonstrated that species-specific effects on the decomposition process existed. Combining the four cryptic species resulted in high competition, with one dominant species, but without complete exclusion of other species. These interspecific interactions translated into different effects on the decomposition process. The species-specific differences indicated that each cryptic species may play an important and distinct role in ecosystem functioning. Functional differences may result in coexistence among very similar species.
Located in Library / RBINS Staff Publications 2016
Article Reference Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species (vol 124, pg 561, 2016)
Located in Library / RBINS Staff Publications 2016
Article Reference Bostryx hennahi (Gray, 1828) the largest Chilean bulimulid (Mollusca: Pulmonata) rediscovered among Tillandsia communities in northern Chile
Located in Library / RBINS Staff Publications 2016
Article Reference The land Mollusca of Saint Kitts and Nevis (Lesser Antilles), with description of a new species
Located in Library / RBINS Staff Publications 2016
Article Reference Synopsis of Central Andean Orthalicoid land snails (Gastropoda, Stylommatophora), excluding Bulimulidae
Located in Library / RBINS Staff Publications 2016
Article Reference A new species of Bothriembryon (Mollusca, Gastropoda, Bothriembryontidae) from southeasternmost Western Australia
Located in Library / RBINS Staff Publications 2016
Article Reference Combining mitochondrial DNA and morphological data to delineate four new millipede species and provisional assignment to the genus Apeuthes Hoffman & Keeton (Diplopoda : Spirobolida : Pachybolidae : Trigoniulinae)
Located in Library / RBINS Staff Publications 2022 OA
Article Reference Eating eggplants as a cucurbit feeder: Dietary shifts affect the gut microbiome of the melon fly Zeugodacus cucurbitae (Diptera, Tephritidae)
Located in Library / RBINS Staff Publications 2022
Article Reference First Evaluation of PRISMA Level 1 Data for Water Applications
This study presents a first assessment of the Top-Of-Atmosphere (TOA) radiances measured in the visible and near-infrared (VNIR) wavelengths from PRISMA (PRecursore IperSpettrale della Missione Applicativa), the new hyperspectral satellite sensor of the Italian Space Agency in orbit since March 2019. In particular, the radiometrically calibrated PRISMA Level 1 TOA radiances were compared to the TOA radiances simulated with a radiative transfer code, starting from in situ measurements of water reflectance. In situ data were obtained from a set of fixed position autonomous radiometers covering a wide range of water types, encompassing coastal and inland waters. A total of nine match-ups between PRISMA and in situ measurements distributed from July 2019 to June 2020 were analysed. Recognising the role of Sentinel-2 for inland and coastal waters applications, the TOA radiances measured from concurrent Sentinel-2 observations were added to the comparison. The results overall demonstrated that PRISMA VNIR sensor is providing TOA radiances with the same magnitude and shape of those in situ simulated (spectral angle difference, SA, between 0.80 and 3.39; root mean square difference, RMSD, between 0.98 and 4.76 [mW m−2 sr−1 nm−1]), with slightly larger differences at shorter wavelengths. The PRISMA TOA radiances were also found very similar to Sentinel-2 data (RMSD 3.78 [mW m−2 sr−1 nm−1]), and encourage a synergic use of both sensors for aquatic applications. Further analyses with a higher number of match-ups between PRISMA, in situ and Sentinel-2 data are however recommended to fully characterize the on-orbit calibration of PRISMA for its exploitation in aquatic ecosystem mapping.
Located in Libraries Projects / ecodam EXT contributors / ecodamEXT