Skip to content. | Skip to navigation

Personal tools

You are here: Home
2922 items matching your search terms.
Filter the results.
Item type



































New items since



Sort by relevance · date (newest first) · alphabetically
Article Reference Have birds ever mattered? An evaluation of the contribution of avian species to the archaeozoological record of Belgium (Iron Age to recent times)
This preliminary study aims to document general trends in the representation of bird remains in anthropogenic contexts from Belgian archaeological sites. A large dataset is analysed, consisting of 186 faunal assemblages from 79 different sites. The contexts included vary in terms of their taphonomic nature (refuse layers, latrines, pits, etc.) and date, ranging from the Iron Age to the modern period. The characteristics of the study area and the dataset as a whole are described, with a focus on identification rates, past and present avian taxonomic diversity, and relative abundance of bird remains compared with domestic mammal remains. The impact of recovery methods (sieving or hand collecting) on these various aspects is also evaluated. A taxonomic analysis describes the diversity and abundance of the different groups of species that are encountered and shows which habitats were preferentially exploited for the hunting of wild birds. The study shows that there is significant taxonomic diversity across the dataset. However, this diversity is not necessarily present in each separate archaeological context, as the number of remains identified by taxon is generally low. Some species or groups of species are ubiquitous and dominant, in particular domestic fowl. Although this analysis is broad and exploratory, it is believed that it will serve as a sound methodological basis for future, more detailed studies focusing on the role that birds played in past human societies during specific chronological periods.
Located in Library / RBINS Staff Publications 2017
Article Reference Morphological and molecular characterization of Lepidonema magnum Morffe & García, 2010 (Nematoda: Oxyuridomorpha: Hystrignathidae) from Passalus interstitialis Eschscholtz, 1829 (Coleoptera: Passalidae) from Cuba and new locality records for the species
Located in Library / RBINS Staff Publications 2019
Article Reference Discovery of a new inland population of Amara strenua Zimmerman, 1832 at Heverlee, central Belgium (Coleoptera: Carabidae)
Located in Library / RBINS Staff Publications 2022
Article Reference A subfossil spirostreptid millipede from SW Libya (Diplopoda, Spirostreptida, Spirostreptidae)
Two fragments of millipedes, referred to the genus Archispirostreptus, are reported from an archaeological site in the Tadrart Acacus region of southwestern Libya. Radiocarbon dating of the specimens shows that one of them dates to between ca. 9100 and 8800 years ago, and the other one between 6400 and 6300 years ago (calibrated dates). The site lies far from known present-day occurrences of spirostreptid millipedes, and the Libyan subfossils probably, like other isolated occurrences of Archispirostreptus species in the Sahara and the Middle East, represent geographical relicts of a former, continuous distribution. The millipedes were probably able to survive at the Libyan site during the early and middle Holocene periods thanks to the more humid conditions, and may descend from animals that initially colonised the area during the even more humid, and longer, last interglacial period.
Located in Library / RBINS Staff Publications 2020
Article Reference Gergithoides Schumacher, 1915 in Vietnam, with two new species and taxonomic notes on the genus (Hemiptera: Fulgoromorpha: Issidae)
Located in Library / RBINS Staff Publications 2017
Article Reference Review of the clavatus group of the lanternfly genus Pyrops (Hemiptera: Fulgoromorpha: Fulgoridae)
Located in Library / RBINS Staff Publications 2017
Inproceedings Reference First virtual endocasts of two Paleocene arctocyonids: a glimpse into the behavior of early placental mammals after the end-Cretaceous extinction
Placentals are by far the most diverse group of mammals today, with 6,111 species. They occupy a plethora of ecological niches worldwide and display a broad range of body masses. The vacant niches left by non-avian dinosaurs and other vertebrates after the end-Cretaceous mass extinction provided a crucial opportunity for placentals to diversify; however, intrinsic factors also may have played a role. The general neurosensory organization exhibited by extant mammals has been maintained since the early Mesozoic. Much later, early members of extant placental groups from the Eocene and Oligocene including rodents, primates and artiodactyls—display neurosensory innovations such as a proportionally larger neocortex and higher encephalization quotient compared to their Mesozoic ancestors. However, between these two well-known intervals of mammalian neurosensory evolution, there is a gap: few studies have focused on the brains of the oldest placentals living during the early Paleogene, in the Paleocene. We focus on the ‘Arctocyonidae’, a likely polyphyletic group of ‘condylarths’, including species potentially implicated in the origins of some extant orders. ‘Arctocyonids’ were among the first placentals to diversify after the end-Cretaceous extinction. They have been reconstructed as small-tomedium sized, mainly omnivorous and terrestrial. We obtained cranial and bony labyrinth endocasts for Chriacus baldwini and C. pelvidens from the lower Paleocene of the San Juan Basin, New Mexico, and Arctocyon primaevus from the upper Paleocene of the Paris Basin, France, via high resolution computed tomography. Both share plesiomorphic brain features with previously described early Paleocene mammals. They have small lissencephalic brains with an EQ range of 0.12-0.43 and 0.16-0.31, respectively. The olfactory bulbs and the paraflocculi represent 6% and less than 1% of the total endocranial volume, respectively and the neocortical height ratio represents ~25% of the total endocranial height. Based on cochlear measurements, both taxa had hearing capabilities similar to those of extant wild boars. Agility scores between 2 and 3 were obtained for both taxa, similar to the modern American badger and crab-eating raccoon, suggesting that C. pelvidens and A. primaevus were ambulatory. These results support growing evidence that early placentals had lower EQs and less expanded neocortices compared to Eocene and later taxa, potentially indicating that high intelligence was not key to the placental radiation after the End-Cretaceous extinction. Grant Information: Marie Sklodowska-Curie Actions: Individual Fellowship, European Research Council Starting Grant, National Science Foundation, and Belgian Science Policy Office.
Located in Library / RBINS Staff Publications 2019
Inproceedings Reference Paleocene and Eocene bird assemblage from the Southern North Sea Basin
Numerous bird bones from the Paleocene and early Eocene of the Belgian and Paris basins have been collected by amateur paleontologists. Four bones from the early-middle Selandian of Maret, Belgium are among the earliest Cenozoic avian remains from Europe and include the oldest temporally well constrained records of the Gastornithidae, as well as tentative records of the paleognathous Lithornithidae and the Ralloidea. Another assemblage from the middle Thanetian of Templeuve, France contains multiple bones of the Lithornithidae as well as a record of the Pelagornithidae. Specimens from the latest Thanetian of Rivecourt-Petit Pâtis, France are tentatively assigned to the Ralloidea and Leptosomiformes. An assemblage of 54 bones from the middle Ypresian of Egem, Belgium represents at least 20 species in more than 11 higher-level taxa. Well-identifiable specimens are assigned to the Odontopterygiformes, Galliformes, Messelornithidae, Apodiformes, Halcyornithidae, Leptosomiformes, and Coraciiformes. Further specimens are tentatively referred to the phaethontiform Prophaethontidae and to the Accipitridae, Masillaraptoridae, and Alcediniformes. These three-dimensionally preserved fossils provide new data on the osteology of taxa that are otherwise mainly known from compression fossils with crushed bones. They also further knowledge of the composition of early Paleogene avifaunas of the North Sea Basin. Paleocene avifaunas of Europe and North America appear to have had different compositions and only a few taxa, such as the paleognathous Lithornithidae, are known from both continents. This suggests that the very similar early Eocene avifaunas of Europe and North America are the result of early Cenozoic dispersal events. The well-represented small galliform species from Egem most closely resembles Argillipes aurorum, an ignored galliform species from the London Clay. The tentatively identified fossils of Accipitridae and Alcediniformes would represent the earliest fossil records of these clades. The birds from Egem include few seabirds (Odontopterygiformes, cf. Prophaethontidae) and is dominated by terrestrial species (Galliformes, Messelornithidae). Arboreal birds (Halcyornithidae, Leptosomiformes, cf. Alcediniformes, Coraciiformes) are less abundant and aerial insectivores (Apodiformes) very scarce, which either indicates a taphonomic bias in the composition of the avifauna or particular paleoenvironmental characteristics of the nearshore habitats in that area of the southern North Sea Basin. Grant Information: Funded by Belgian Science Policy Office (project BR/121/A3/PalEurAfrica).
Located in Library / RBINS Staff Publications 2019
Article Reference Large-scale and small-scale population genetic structure of the medically important gastropod species Bulinus truncatus (Gastropoda, Heterobranchia)
Located in Library / RBINS Staff Publications 2022
Article Reference Reevaluating the timing of Neanderthal disappearance in Northwest Europe
Understanding when Neanderthals disappeared is a hotly debated topic. When radiocarbon dating placed the Spy Neanderthals amongst the latest surviving in Northwest Europe, questions were raised regarding the reliability of the dates. Using a procedure more efficient in removing contamination and ancient genomic analysis, we show that previous dates produced on Neanderthal specimens from Spy are too young by up to 10,000 y. Our direct radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt show a reduction of the uncertainty for the time window corresponding to Neanderthal disappearance in Northwest Europe. This population disappeared at 44,200 to 40,600 cal B.P. (at 95.4% probability). This is also earlier than previous suggestions based on dates on bulk collagen.Elucidating when Neanderthal populations disappeared from Eurasia is a key question in paleoanthropology, and Belgium is one of the key regions for studying the Middle to Upper Paleolithic transition. Previous radiocarbon dating placed the Spy Neanderthals among the latest surviving Neanderthals in Northwest Europe with reported dates as young as 23,880 ± 240 B.P. (OxA-8912). Questions were raised, however, regarding the reliability of these dates. Soil contamination and carbon-based conservation products are known to cause problems during the radiocarbon dating of bulk collagen samples. Employing a compound-specific approach that is today the most efficient in removing contamination and ancient genomic analysis, we demonstrate here that previous dates produced on Neanderthal specimens from Spy were inaccurately young by up to 10,000 y due to the presence of unremoved contamination. Our compound-specific radiocarbon dates on the Neanderthals from Spy and those from Engis and Fonds-de-Forêt demonstrate that they disappeared from Northwest Europe at 44,200 to 40,600 cal B.P. (at 95.4% probability), much earlier than previously suggested. Our data contribute significantly to refining models for Neanderthal disappearance in Europe and, more broadly, show that chronometric models regarding the appearance or disappearance of animal or hominin groups should be based only on radiocarbon dates obtained using robust pretreatment methods.All the radiocarbon data generated at the ORAU are archived internally and are also available on the laboratory’s website, along with a link to the paper. The mitochondrial genome from Fonds-de-Forêt is deposited in GenBank with the accession number PRJEB39136. All other study data are included in the article and/or SI Appendix.
Located in Library / RBINS Staff Publications 2021